Voir la notice de l'article provenant de la source EDP Sciences
S. B. Damelin 1 ; Y. Gu 2 ; D. C. Wunsch 3 ; R. Xu 4
@article{MMNP_2015_10_3_a14, author = {S. B. Damelin and Y. Gu and D. C. Wunsch and R. Xu}, title = {Fuzzy {Adaptive} {Resonance} {Theory,} {Diffusion} {Maps} and their applications to {Clustering} and {Biclustering}}, journal = {Mathematical modelling of natural phenomena}, pages = {206--211}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2015}, doi = {10.1051/mmnp/201510315}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510315/} }
TY - JOUR AU - S. B. Damelin AU - Y. Gu AU - D. C. Wunsch AU - R. Xu TI - Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering JO - Mathematical modelling of natural phenomena PY - 2015 SP - 206 EP - 211 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510315/ DO - 10.1051/mmnp/201510315 LA - en ID - MMNP_2015_10_3_a14 ER -
%0 Journal Article %A S. B. Damelin %A Y. Gu %A D. C. Wunsch %A R. Xu %T Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering %J Mathematical modelling of natural phenomena %D 2015 %P 206-211 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510315/ %R 10.1051/mmnp/201510315 %G en %F MMNP_2015_10_3_a14
S. B. Damelin; Y. Gu; D. C. Wunsch; R. Xu. Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 206-211. doi : 10.1051/mmnp/201510315. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510315/
[1] E. J. Candés, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory, (52) (2006), 5406–5425.
[2] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, D. Rosen. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, (3) (1992), 698–713.
[3] G. Carpenter, S. Grossberg, D. Rosen. Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance. Neural Networks, (4) (1991), 759–771.
[4] K. Cawse, S. B. Damelin, R. McIntyre, M. Mitchley, L. du Plessis, M. Sears. An Investigation of data compression for Hyperspectral core image data. In: Proceedings of the Mathematics in Industry Study Group. South Africa, 2008, 1–25.
[5] K. Cawse, M. Sears, A. Robin, S. B. Damelin, K. Wessels, F. van den Bergh, R. Mathieu. Using random matrix theory to determine the number of endmembers in a hyperspectral image. In: Proceedings of WHISPERS 2010. Reykjavik, Iceland, 2010, 45–52.
[6] Journal of Applied and Computational Harmonic Analysis 2006 5 30
,[7] S. B. Damelin, J. Levesley, D. L. Ragozin, X. Sun. Energies, Group Invariant Kernels and Numerical Integration on Compact Manifolds. Journal of Complexity, (25) (2009), 152-1162.
[8] S. B. Damelin, W. Miller. Mathematics and Signal Processing. Cambridge Texts in Applied Mathematics, No. 48, 2012.
[9] L. du Plessis, R. Xu, S. B. Damelin, M. Sears, D. C. Wunsch. Reducing dimensionality of hyperspectral data with diffusion maps and clustering with K-means and fuzzy art. Int. J. Syst. Contr. Comm., (3) (2011), 232–251.
[10] L. du Plessis, R. Xu, S. B. Damelin, M. Sears, D. C. Wunsch. Reducing dimensionality of hyperspectral data with diffusion maps and clustering with K-means and fuzzy art. In: Proceedings of Interational Joint Conference on Neural Networks. 2009, 32–36.
[11] Involve 2012 159 172
, ,[12] IEEE Transactions on Computational Biology and Bioinformatics 2004 24 45
,[13] M. Mitchley, M. Sears, S. B. Damelin. Target detection I Hyperpectral mineral data using wavelet analysis. In: Proceedings of the 2009 IEEE Geosciences and Remote Sensing Symposium. Cape Town, 2009, 23–45.
[14] S. Mulder, D. Wunsch II. Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks. Neural Networks, (16) (2003), 827–832.
[15] J. de la Porte, B. M. Herbst, W. Hereman, S. J. van der Walt. An Introduction to Diffusion Maps. In: Proceedings of the 19th Symposium of the Pattern Recognition Association of South Africa. 2008.
[16] D. Wunsch II. ART Properties of Interest in Engineering Applications. In: Proceedings of International Conference of Neural Networks. Atlanta, 2009.
[17] R. Xu, D. Wunsch II. Clustering. IEEE/Wiley, 2008.
[18] R. Xu, S. B. Damelin, D. C. Wunsch II. Applications of diffusion maps in gene expression data-based cancer diagnosis analysis. In: Proceedings of the 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society. Lyon, France, 2007, 4613–4616.
[19] R. Xu, L. du Plessis, S. B. Damelin, M. Sears, D. C. Wunsch II. Analysis of Hyperspectral Data with Diffusion Maps and Fuzzy ART. In: Proceedings of the 2009 International Joint Conference on Neural Networks. 2009, 2302–2309.
[20] IEEE Transactions on Neural Networks 2005 645 678
,[21] R. Xu, S. B. Damelin, B. Nadler, D. C. Wunsch II. Clustering of High-Dimensional Gene Expression Data with Feature Filtering Methods and Diffusion Maps. Bio-Medical Engineering and Informatics, (1) (2008), 245–249.
[22] BARTMAP: A Viable Structure for Biclustering Neural Networks 2011 709 716
,Cité par Sources :