Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 206-211.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we describe an algorithm FARDiff (Fuzzy Adaptive Resonance Diffusion) which combines Diffusion Maps and Fuzzy Adaptive Resonance Theory to do clustering on high dimensional data. We describe some applications of this method and some problems for future research. Dedicated to our friend and colleague Prof. Alexander Gorban
DOI : 10.1051/mmnp/201510315

S. B. Damelin 1 ; Y. Gu 2 ; D. C. Wunsch 3 ; R. Xu 4

1 Mathematical Reviews, The American Mathematical Society, Ann Arbor, MI 48103 USA
2 Department of Mathematics, University of Michigan – Ann Arbor Ann Arbor, MI 48109 USA
3 Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, University of Missouri – Rolla, Rolla, MO 65409-0249 USA
4 GE Global Research, Niskayuna, NY 12309 USA
@article{MMNP_2015_10_3_a14,
     author = {S. B. Damelin and Y. Gu and D. C. Wunsch and R. Xu},
     title = {Fuzzy {Adaptive} {Resonance} {Theory,} {Diffusion} {Maps} and their applications to {Clustering} and {Biclustering}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {206--211},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2015},
     doi = {10.1051/mmnp/201510315},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510315/}
}
TY  - JOUR
AU  - S. B. Damelin
AU  - Y. Gu
AU  - D. C. Wunsch
AU  - R. Xu
TI  - Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 206
EP  - 211
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510315/
DO  - 10.1051/mmnp/201510315
LA  - en
ID  - MMNP_2015_10_3_a14
ER  - 
%0 Journal Article
%A S. B. Damelin
%A Y. Gu
%A D. C. Wunsch
%A R. Xu
%T Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering
%J Mathematical modelling of natural phenomena
%D 2015
%P 206-211
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510315/
%R 10.1051/mmnp/201510315
%G en
%F MMNP_2015_10_3_a14
S. B. Damelin; Y. Gu; D. C. Wunsch; R. Xu. Fuzzy Adaptive Resonance Theory, Diffusion Maps and their applications to Clustering and Biclustering. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 206-211. doi : 10.1051/mmnp/201510315. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510315/

[1] E. J. Candés, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory, (52) (2006), 5406–5425.

[2] G. Carpenter, S. Grossberg, N. Markuzon, J. Reynolds, D. Rosen. Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, (3) (1992), 698–713.

[3] G. Carpenter, S. Grossberg, D. Rosen. Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance. Neural Networks, (4) (1991), 759–771.

[4] K. Cawse, S. B. Damelin, R. McIntyre, M. Mitchley, L. du Plessis, M. Sears. An Investigation of data compression for Hyperspectral core image data. In: Proceedings of the Mathematics in Industry Study Group. South Africa, 2008, 1–25.

[5] K. Cawse, M. Sears, A. Robin, S. B. Damelin, K. Wessels, F. van den Bergh, R. Mathieu. Using random matrix theory to determine the number of endmembers in a hyperspectral image. In: Proceedings of WHISPERS 2010. Reykjavik, Iceland, 2010, 45–52.

[6] R. Coifman, S. Lafon Journal of Applied and Computational Harmonic Analysis 2006 5 30

[7] S. B. Damelin, J. Levesley, D. L. Ragozin, X. Sun. Energies, Group Invariant Kernels and Numerical Integration on Compact Manifolds. Journal of Complexity, (25) (2009), 152-1162.

[8] S. B. Damelin, W. Miller. Mathematics and Signal Processing. Cambridge Texts in Applied Mathematics, No. 48, 2012.

[9] L. du Plessis, R. Xu, S. B. Damelin, M. Sears, D. C. Wunsch. Reducing dimensionality of hyperspectral data with diffusion maps and clustering with K-means and fuzzy art. Int. J. Syst. Contr. Comm., (3) (2011), 232–251.

[10] L. du Plessis, R. Xu, S. B. Damelin, M. Sears, D. C. Wunsch. Reducing dimensionality of hyperspectral data with diffusion maps and clustering with K-means and fuzzy art. In: Proceedings of Interational Joint Conference on Neural Networks. 2009, 32–36.

[11] C. Fefferman, S. B. Damelin, W. Glover Involve 2012 159 172

[12] S. Madeira, A. Oliveira IEEE Transactions on Computational Biology and Bioinformatics 2004 24 45

[13] M. Mitchley, M. Sears, S. B. Damelin. Target detection I Hyperpectral mineral data using wavelet analysis. In: Proceedings of the 2009 IEEE Geosciences and Remote Sensing Symposium. Cape Town, 2009, 23–45.

[14] S. Mulder, D. Wunsch II. Million city traveling salesman problem solution by divide and conquer clustering with adaptive resonance neural networks. Neural Networks, (16) (2003), 827–832.

[15] J. de la Porte, B. M. Herbst, W. Hereman, S. J. van der Walt. An Introduction to Diffusion Maps. In: Proceedings of the 19th Symposium of the Pattern Recognition Association of South Africa. 2008.

[16] D. Wunsch II. ART Properties of Interest in Engineering Applications. In: Proceedings of International Conference of Neural Networks. Atlanta, 2009.

[17] R. Xu, D. Wunsch II. Clustering. IEEE/Wiley, 2008.

[18] R. Xu, S. B. Damelin, D. C. Wunsch II. Applications of diffusion maps in gene expression data-based cancer diagnosis analysis. In: Proceedings of the 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society. Lyon, France, 2007, 4613–4616.

[19] R. Xu, L. du Plessis, S. B. Damelin, M. Sears, D. C. Wunsch II. Analysis of Hyperspectral Data with Diffusion Maps and Fuzzy ART. In: Proceedings of the 2009 International Joint Conference on Neural Networks. 2009, 2302–2309.

[20] R. Xu, D. Wunsch IEEE Transactions on Neural Networks 2005 645 678

[21] R. Xu, S. B. Damelin, B. Nadler, D. C. Wunsch II. Clustering of High-Dimensional Gene Expression Data with Feature Filtering Methods and Diffusion Maps. Bio-Medical Engineering and Informatics, (1) (2008), 245–249.

[22] R. Xu, D. C. Wunsch BARTMAP: A Viable Structure for Biclustering Neural Networks 2011 709 716

Cité par Sources :