About Bifurcational Parametric Simplification
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 168-185.

Voir la notice de l'article provenant de la source EDP Sciences

A concept of “critical” simplification was proposed by Yablonsky and Lazman (1996) for the oxidation of carbon monoxide over a platinum catalyst using a Langmuir-Hinshelwood mechanism. The main observation was a simplification of the mechanism at ignition and extinction points. The critical simplification is an example of a much more general phenomenon that we call a bifurcational parametric simplification. Ignition and extinction points are points of steady state multiplicity bifurcations, i.e., they are points of a corresponding bifurcation set for parameters. Any bifurcation produces a dependence between system parameters. This is a mathematical explanation and/or justification of the “parametric simplification”. It leads us to a conjecture that “maximal bifurcational parametric simplification” corresponds to the “maximal bifurcation complexity.” This conjecture can have practical applications for experimental study, because at points of “maximal bifurcation complexity” the number of independent system parameters is minimal and all other parameters can be evaluated analytically or numerically. We illustrate this method by the case of the simplest possible bifurcation, that is a multiplicity bifurcation of steady state and we apply this analysis to the Langmuir mechanism. Our analytical study is based on a coordinate-free version of the method of invariant manifolds by Bykov, Goldfarb, Gol’dshtein (2006). As a result we obtain a more accurate description of the “critical (parametric) simplifications.” With the help of the “bifurcational parametric simplification” kinetic mechanisms and reaction rate parameters may be readily identified from a monoparametric experiment (reaction rate vs. reaction parameter).
DOI : 10.1051/mmnp/201510313

V. Gol’dshtein 1 ; N. Krapivnik 1 ; G. Yablonsky 2

1 Department of Mathematics, Ben Gurion University of the Negev P.O.B. 653, 84105 Beer-Sheva, Israel
2 Parks College of Engineering, Aviation and Technology Saint Louis University, Lindell Blvd, 3450, St. Louis MO 63103, USA
@article{MMNP_2015_10_3_a12,
     author = {V. Gol{\textquoteright}dshtein and N. Krapivnik and G. Yablonsky},
     title = {About {Bifurcational} {Parametric} {Simplification}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {168--185},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2015},
     doi = {10.1051/mmnp/201510313},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510313/}
}
TY  - JOUR
AU  - V. Gol’dshtein
AU  - N. Krapivnik
AU  - G. Yablonsky
TI  - About Bifurcational Parametric Simplification
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 168
EP  - 185
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510313/
DO  - 10.1051/mmnp/201510313
LA  - en
ID  - MMNP_2015_10_3_a12
ER  - 
%0 Journal Article
%A V. Gol’dshtein
%A N. Krapivnik
%A G. Yablonsky
%T About Bifurcational Parametric Simplification
%J Mathematical modelling of natural phenomena
%D 2015
%P 168-185
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510313/
%R 10.1051/mmnp/201510313
%G en
%F MMNP_2015_10_3_a12
V. Gol’dshtein; N. Krapivnik; G. Yablonsky. About Bifurcational Parametric Simplification. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 168-185. doi : 10.1051/mmnp/201510313. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510313/

[1] V.I. Arnold. Catastrophe Theory, 3rd ed. Berlin: Springer–Verlag, 1992.

[2] V. Bykov, I. Goldfarb, V. Gol’dshtein. Singularly Perturbed Vector Fields. Journal of Physics: Conference Series, 55 (2006), 28–44.

[3] V. Bykov, V. Gol’Dshtein, U. Maas Combustion Theory and Modelling (CTM) 2008 389 405

[4] B.L. Clarke Cell Biophisiscs 1988 237 253

[5] D. Constales, G.S. Yablonsky, G.B. Marin Chemical Engineering Science 2014 164 168

[6] V. Gol’dshtein, V. Sobolev. Qualitative analysis of singularly perturbed systems of chemical kinetics. In: Singularity Theory and Some Problems of Functional Analysis, S.G. Gindikin, editor. Amer. Math. Soc. ser. 2. vol. 153, 1992, 73–92.

[7] A. Khibnik, Yu. Kuznetsov, V. Levitin, E. Nikolaev Phys. D 1993 360 371

[8] A.I. Khibnik, G.S. Yablonsky, V.I. Bykov Russian J. Phys. Chemistry 1987 722 723

[9] Y.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer, New York, 2004.

[10] K.J. Laidler. Chemical Kinetics, 3rd ed. Benjamin–Cummings, 1997.

[11] L.D. Landau Dokl. Akad. Nauk. SSSR 1944 339 342

[12] U. Maas, Habilitation Thesis, Institut fuer Technische Verbrennung, Universitaet Stuttgart, 1993.

[13] G.B.Marin, G.S.Yablonsky. Kinetic of Chemical Reactions. Decoding Complexity. J. Wiley – VCH, 2014.

[14] H. Poincaré. Les Méthodes Nouvelles de la Méchanique Céleste. Gauthier-Villars, P aris, [1892,1893,1899].

[15] R. Thom. Stabilite structurel et morphogenese. W.A.Bengamin, Reading, Massachusets, USA, 1972.

[16] H. Whitney Annals of Mathematics 1965 496 549

[17] F.A. Williams. Combustion Theory, 2nd ed. Benjamin–Cummings, Menlo Park, California, 1985.

[18] G.S. Yablonsky, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic Models of Catalytic Reactions. Comprehensive Chemical Kinetics ser. vol. 32. Elsevier, Amsterdam – Oxford-New York-Tokyo, 1991.

[19] G.S. Yablonsky, M.Z. Lazman React. Kinet. Catal. Letters 1996 145 147

[20] G.S. Yablonsky, I.M.Y. Mareels, M. Lazman Chemical Engineering Science 2003 4833 4842

[21] E.C. Zeeman Scientific American 1976 65 83

Cité par Sources :