An Invariant-Manifold Approach to Lumping
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 149-167.

Voir la notice de l'article provenant de la source EDP Sciences

Differential equation models of chemical or biochemical systems usually display multiple, widely varying time scales, i.e. they are stiff. After the decay of transients, trajectories of these systems approach low-dimensional invariant manifolds on which the eventual attractor (an equilibrium point in a closed system) is approached, and in which this attractor is embedded. Computing one of these slow invariant manifolds (SIMs) results in a reduced model of dimension equal to the dimension of the SIM. Another approach to model reduction involves lumping, the formulation of a reduced set of variables that combine the original model variables and in terms of which the reduced model is framed. In this study, we combine lumping with a constructive method for SIMs based on the iterative solution of the invariance equation. We illustrate these methods using a simple model of a linear metabolic pathway, and a model for hydrogen oxidation. The former is treated with a linear lumping function, while a nonlinear lumping function based on a Lyapunov function is used in the latter.
DOI : 10.1051/mmnp/201510312

B. E. Okeke 1 ; M. R. Roussel 1

1 Department of Chemistry and Biochemistry, University of Lethbridge Lethbridge, Alberta T1K 3M4, Canada
@article{MMNP_2015_10_3_a11,
     author = {B. E. Okeke and M. R. Roussel},
     title = {An {Invariant-Manifold} {Approach} to {Lumping}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {149--167},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2015},
     doi = {10.1051/mmnp/201510312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510312/}
}
TY  - JOUR
AU  - B. E. Okeke
AU  - M. R. Roussel
TI  - An Invariant-Manifold Approach to Lumping
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 149
EP  - 167
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510312/
DO  - 10.1051/mmnp/201510312
LA  - en
ID  - MMNP_2015_10_3_a11
ER  - 
%0 Journal Article
%A B. E. Okeke
%A M. R. Roussel
%T An Invariant-Manifold Approach to Lumping
%J Mathematical modelling of natural phenomena
%D 2015
%P 149-167
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510312/
%R 10.1051/mmnp/201510312
%G en
%F MMNP_2015_10_3_a11
B. E. Okeke; M. R. Roussel. An Invariant-Manifold Approach to Lumping. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 149-167. doi : 10.1051/mmnp/201510312. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510312/

[1] M. Aoki. Some approximation methods for estimation and control of large scale systems. IEEE Trans. Automat. Control, AC-23 (1978), 173–182.

[2] P. Auger, R. Bravo De La Parra C. R. Acad. Sci., Ser. III 2000 665 674

[3] F. Büchel, N. Rodriguez, N. Swainston, C. Wrzodek, T. Czauderna, R. Keller, F. Mittag, M. Schubert, M. Glont, M. Golebiewski, M. Van Iersel, S. Keating, M. Rall, M. Wybrow, H. Hermjakob, M. Hucka, D. B. Kell, W. Müller, P. Mendes, A. Zell, C. Chaouiya, J. Saez-Rodriguez, F. Schreiber, C. Laibe, A. Dräger, N. Le Novère BMC Syst. Biol. 2013 116

[4] F. W. Chang, F. A. Howes. Nonlinear Singular Perturbation Phenomena: Theory and Application. Applied Mathematical Sciences. vol. 56. Springer, New York, 1984.

[5] G.-M. Côme J. Phys. Chem. 1977 2560 2563

[6] S. M. Cox, A. J. Roberts Physica D 1995 126 141

[7] P. G. Coxson, K. B. Bischoff Ind. Eng. Chem. Res. 1987 1239 1248

[8] P. G. Coxson, K. B. Bischoff Ind. Eng. Chem. Res. 1987 2151 2157

[9] C. F. Curtiss, J. O. Hirschfelder Proc. Natl. Acad. Sci. U.S.A. 1952 235 243

[10] M. J. Davis, R. T. Skodje J. Chem. Phys. 1999 859 874

[11] G. Farkas Chem. Eng. Sci. 1999 3909 3915

[12] N. Fenichel J. Differential Equations 1979 53 98

[13] S. J. Fraser J. Chem. Phys. 1988 4732 4738

[14] S. J. Fraser Int. J. Quantum Chem. 2006 228 243

[15] J.-M. Ginoux, B. Rossetto, L. O. Chua Int. J. Bifurc. Chaos 2008 3409 3430

[16] A. N. Gorban, I. V. Karlin, V. B. Zmievskii, S. V. Dymova Physica A 2000 361 379

[17] A. N. Gorban, I. V. Karlin Transport Theory Stat. Phys. 1994 559 632

[18] A. N. Gorban, I. V. Karlin Chem. Eng. Sci. 2003 4751 4768

[19] A. N. Gorban, I. V. Karlin, A. Yu. Zinovyev Phys. Rep. 2004 197 403

[20] A. N. Gorban, I. V. Karlin, A. Yu. Zinovyev Physica A 2004 106 154

[21] D. A. Goussis, M. Valorani J. Comput. Phys. 2006 316 346

[22] H. Huang, M. Fairweather, J. F. Griffiths, A. S. Tomlin, R. B. Brad Proc. Combust. Inst. 2005 1309 1316

[23] F. G. Heineken, H. M. Tsuchiya, R. Aris Math. Biosci. 1967 95 113

[24] Y. Iwasa, V. Andreasen, S. Levin Ecol. Modelling 1987 287 302

[25] J. G. Kemeny, J. L. Snell. Finite Markov Chains. Springer, New York, 1976, pp. 123–140.

[26] J. C. W. Kuo, J. Wei Ind. Eng. Chem. Fundam. 1969 124 133

[27] S. H. Lam Combust. Sci. Technol. 1993 375 404

[28] S. H. Lam, D. A. Goussis Int. J. Chem. Kinet. 1994 461 486

[29] G. Li, H. Rabitz Chem. Eng. Sci. 1996 4801 4816

[30] G. Li, H. Rabitz, J. Tóth Chem. Eng. Sci. 1994 343 361

[31] G. Li, A. S. Tomlin, H. Rabitz, J. Tóth J. Chem. Phys. 1993 3562 3574

[32] C. C. Lin, L. A. Segel. Mathematics Applied to Deterministic Problems in the Natural Sciences. Classics in Applied Mathematics, vol. 1 SIAM, Philadelphia, 1988, ch. 9-10.

[33] Ch. Lubich, K. Nipp, D. Stoffer SIAM J. Numer. Anal. 1995 1296 1307

[34] U. Maas, A. S. Tomlin. Time-scale splitting-based mechanism reduction. Cleaner Combustion (F. Battin-Leclerc et al., ed.), Springer, London, 2013, pp. 467–484.

[35] A. H. Nguyen, S. J. Fraser J. Chem. Phys. 1989 186 193

[36] B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, F. Thiele J. Fluid Mech. 2003 335 363

[37] B. E. Okeke. Lumping Methods for Model Reduction. Master’s thesis, University of Lethbridge, 2013. URL: https://www.uleth.ca/dspace/handle/10133/3558

[38] M. S. Okino, M. L. Mavrovouniotis Chem. Rev. 1998 391 408

[39] D. J. M. Park J. Theor. Biol. 1974 31 74

[40] N. Peters, B. Rogg. Reduced Kinetic Mechanism for Applications in Combustion Systems. 2nd ed., Springer, Berlin, 1993.

[41] D. Rempfer Theor. Comput. Fluid Dyn. 2000 75 88

[42] A. J. Roberts J. Austral. Math. Soc. B 1989 48 75

[43] B. Rossetto, T. Lenzini, S. Ramdani, G. Suchey Int. J. Bifurc. Chaos 1998 2135 2145

[44] M. R. Roussel. A Rigorous Approach to Steady-State Kinetics Applied to Simple Enzyme Mechanisms. Ph.D. thesis, University of Toronto, 1994.

[45] M. R. Roussel J. Math. Chem. 1997 385 393

[46] M. R. Roussel J. Chem. Phys. 1998 8154 8160

[47] M. R. Roussel, S. J. Fraser J. Chem. Phys. 1990 1072 1081

[48] M. R. Roussel, S. J. Fraser J. Chem. Phys. 1991 7106 7113

[49] M. R. Roussel, S. J. Fraser J. Phys. Chem. 1993 8316 8327

[50] M. R. Roussel, S. J. Fraser Chaos 2001 196 206

[51] D. Shear J. Theor. Biol. 1967 212 228

[52] A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi Ind. Eng. Chem. Res. 2014 9004 9016

[53] A. N. Tikhonov, A. B. Vasil’eva, A. G. Sveshnikov. Differential Equations. Springer, Berlin, 1985, pp. 186–213.

[54] A. S. Tomlin, T. Turányi, M. J. Pilling Compr. Chem. Kinet. 1997 293 437

[55] K. Uldall Kristiansen, M. Brøns, J. Starke SIAM J. Appl. Dyn. Syst. 2014 861 900

[56] J. Warnatz, U. Maas, R.W. Dibble. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 2nd ed., Springer, Berlin, 1999.

[57] J. Wei, J. C. W. Kuo Ind. Eng. Chem. Fundam. 1969 114 123

[58] L. E. Whitehouse, A. S. Tomlin, M. J. Pilling Atmos. Chem. Phys. 2004 2025 2056

[59] A. Zagaris, H. G. Kaper, T. J. Kaper J. Nonlinear Sci. 2004 59 91

[60] A. Zagaris, H. G. Kaper, T. J. Kaper Multiscale Model. Simul. 2004 613 638

Cité par Sources :