Voir la notice de l'article provenant de la source EDP Sciences
O. Radulescu 1 ; S. Vakulenko 2 ; D. Grigoriev 3
@article{MMNP_2015_10_3_a9, author = {O. Radulescu and S. Vakulenko and D. Grigoriev}, title = {Model {Reduction} of {Biochemical} {Reactions} {Networks} by {Tropical} {Analysis} {Methods}}, journal = {Mathematical modelling of natural phenomena}, pages = {124--138}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2015}, doi = {10.1051/mmnp/201510310}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510310/} }
TY - JOUR AU - O. Radulescu AU - S. Vakulenko AU - D. Grigoriev TI - Model Reduction of Biochemical Reactions Networks by Tropical Analysis Methods JO - Mathematical modelling of natural phenomena PY - 2015 SP - 124 EP - 138 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510310/ DO - 10.1051/mmnp/201510310 LA - en ID - MMNP_2015_10_3_a9 ER -
%0 Journal Article %A O. Radulescu %A S. Vakulenko %A D. Grigoriev %T Model Reduction of Biochemical Reactions Networks by Tropical Analysis Methods %J Mathematical modelling of natural phenomena %D 2015 %P 124-138 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510310/ %R 10.1051/mmnp/201510310 %G en %F MMNP_2015_10_3_a9
O. Radulescu; S. Vakulenko; D. Grigoriev. Model Reduction of Biochemical Reactions Networks by Tropical Analysis Methods. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 124-138. doi : 10.1051/mmnp/201510310. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510310/
[1] Journal of Symbolic Computation 2007 54 73
, , , ,[2] J. Phys. Chem. 1992 4066 4071
[3] Formal Methods in System Design 1996 77 104
, , ,[4] M. Einsiedler, M. Kapranov, D. Lind. Non-archimedean amoebas and tropical varieties. Journal für die reine und angewandte Mathematik (Crelles Journal), (601) (2006), 139–157.
[5] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Springer-Verlag, 1995.
[6] Proceedings of the National Academy of Sciences 2009 6453 6458
, , , ,[7] A.N. Gorban, I.V. Karlin. Invariant manifolds for physical and chemical kinetics, Lect. Notes Phys. 660. Springer, Berlin Heidelberg, 2005.
[8] A.N. Gorban, O. Radulescu. Dynamic and static limitation in reaction networks, revisited. In: D.W. Guy, B. Marin, G.S. Yablonsky, editors. Advances in Chemical Engineering – Mathematics in Chemical Kinetics and Engineering. vol. 34 of Advances in Chemical Engineering. Elsevier, 2008, 103–173.
[9] Chemical Engineering Science 2010 2310 2324
, ,[10] D. Grigoriev, A. Weber. Complexity of solving systems with few independent monomials and applications to mass-action kinetics. In: V. P. Gerdt, W. Koepf, E.W. Mayr, E.V. Vorozhtsov, editors. Computer Algebra in Scientific Computing, vol. 7442 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg, 2012, 143–154.
[11] A. Katok, B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, 1996.
[12] J. Phys. Chem. 1956 1375 1378
,[13] International Journal of Chemical Kinetics 1994 461 486
,[14] Combustion and Flame 1992 239 264
,[15] D. Maclagan, B. Sturmfels. Introduction to tropical geometry. Graduate Studies in Mathematics, vol. 161, 2009.
[16] Bulletin of mathematical biology 2012 1027 1065
, , ,[17] V. Noel, D. Grigoriev, S. Vakulenko, O. Radulescu. Tropical geometries and dynamics of biochemical networks application to hybrid cell cycle models. In: Jérôme Feret and Andre Levchenko, editors, Proceedings of the 2nd International Workshop on Static Analysis and Systems Biology (SASB 2011), vol. 284 of Electronic Notes in Theoretical Computer Science. Elsevier, 2012, 75–91.
[18] V. Noel, D. Grigoriev, S. Vakulenko, O. Radulescu. Tropicalization and tropical equilibration of chemical reactions. In: G. Litvinov and S. Sergeev, editors, Tropical and Idempotent Mathematics and Applications, vol. 616 of Contemporary Mathematics. American Mathematical Soc., 2014, 261–277.
[19] BMC systems biology 2008 86
, , ,[20] Frontiers in Genetics 2012 131
, , ,[21] Journal of Mathematical Chemistry 2013 2401 2422
, ,[22] C. Robinson. Dynamical systems: stability, symbolic dynamics and chaos. CRC Press, 1999.
[23] S.S. Samal, O. Radulescu, D. Grigoriev, H. Fröhlich, A. Weber. A Tropical Method based on Newton Polygon Approach for Algebraic Analysis of Biochemical Reaction Networks. In: Proceedings of the 9th European Conference on Mathematical and Theoretical Biology, 2014.
[24] Mathematical biosciences 1987 83 115
,[25] Algorithms for Molecular Biology 2012 15
[26] Algorithms for Molecular Biology 2014 24
, ,[27] Advances in Geometry 2004 389 411
,[28] Dokl. Akad. Nauk SSSR 1965 615 618
Cité par Sources :