Entropy-inspired Lyapunov Functions and Linear First Integrals for Positive Polynomial Systems
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 105-123.

Voir la notice de l'article provenant de la source EDP Sciences

Two partially overlapping classes of positive polynomial systems, chemical reaction networks with mass action law (MAL-CRNs) and quasi-polynomial systems (QP systems) are considered. Both of them have an entropy-like Lyapunov function associated to them which are similar but not the same. Inspired by the work of Prof. Gorban [] on the entropy-functionals for Markov chains, and using results on MAL-CRN and QP-systems theory we characterize MAL-CRNs and QP systems that enable both types of entropy-like Lyapunov functions. The starting point of the analysis is the class of linear weakly reversible MAL-CRNs that are mathematically equivalent to Markov chains with an equilibrium point where various entropy level set equivalent Lyapunov functions are available. We show that non-degenerate linear kinetic systems with a linear first integral (that corresponds to conservation) can be transformed to linear weakly reversible MAL-CRNs using linear diagonal transformation, and the coefficient matrix of this system is diagonally stable. This implies the existence of the weighted version of the various entropy level set equivalent Lyapunov functions for non-degenerate linear kinetic systems with a linear first integral. Using translated X-factorable phase space transformations and nonlinear variable transformations a dynamically similar linear ODE model is associated to the QP system models with a positive equilibrium point. The non-degenerate kinetic property together with the existence of positive equilibrium point form a sufficient condition of the existence of the weighted version of the various entropy level set equivalent Lyapunov functions in this case. Further extension has been obtained by using the time re-parametrization transformation defined for QP models.
DOI : 10.1051/mmnp/201510309

K.M. Hangos 1 ; A. Magyar 2 ; G. Szederkényi 3

1 Process Control Research Group, Computer and Automation Research Institute H-1111 Budapest, Kende u. 13-17, Hungary
2 Department of Electrical Engineering and Information Systems University of Pannonia, H-8200 Veszprém, Egyetem u. 10, Hungary
3 Faculty of Information Technology, Pázmány Péter Catholic University Práter u. 50/a, H-1083 Budapest, Hungary
@article{MMNP_2015_10_3_a8,
     author = {K.M. Hangos and A. Magyar and G. Szederk\'enyi},
     title = {Entropy-inspired {Lyapunov} {Functions} and {Linear} {First} {Integrals} for {Positive} {Polynomial} {Systems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {105--123},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2015},
     doi = {10.1051/mmnp/201510309},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510309/}
}
TY  - JOUR
AU  - K.M. Hangos
AU  - A. Magyar
AU  - G. Szederkényi
TI  - Entropy-inspired Lyapunov Functions and Linear First Integrals for Positive Polynomial Systems
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 105
EP  - 123
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510309/
DO  - 10.1051/mmnp/201510309
LA  - en
ID  - MMNP_2015_10_3_a8
ER  - 
%0 Journal Article
%A K.M. Hangos
%A A. Magyar
%A G. Szederkényi
%T Entropy-inspired Lyapunov Functions and Linear First Integrals for Positive Polynomial Systems
%J Mathematical modelling of natural phenomena
%D 2015
%P 105-123
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510309/
%R 10.1051/mmnp/201510309
%G en
%F MMNP_2015_10_3_a8
K.M. Hangos; A. Magyar; G. Szederkényi. Entropy-inspired Lyapunov Functions and Linear First Integrals for Positive Polynomial Systems. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 105-123. doi : 10.1051/mmnp/201510309. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510309/

[1] D. Angeli European Journal of Control 2009 398 406

[2] G.P. Beretta Journal of Mathematical Physics 1986 305 308

[3] L. Brenig, A. Goriely Phys. Rev. A 1989 4119 4122

[4] V. Bykov, A. Gorban, G. Yablonskii, V. Elokhin. Kinetic models of catalytic reactions. In: R. Compton (ed.): Comprehensive Chemical Kinetics, vol. 32. Elsevier, Amsterdam, 1991.

[5] V. Chellaboina, S.P. Bhat, W.M. Haddad, D.S. Bernstein IEEE Control Systems Magazine 2009 60 78

[6] G. Farkas Chemical Engineering Science 1999 3909 3915

[7] M. Feinberg, F. Horn Archive for Rational Mechanics and Analysis 1977 83 97

[8] M. Feinberg Chemical Engineering Science 1987 2229 2268

[9] A. Figueiredo, I.M. Gleria, T.M. Rocha Filho Physics Letters A 2000 335 341

[10] I. Gléria, A. Figueiredo, T.R. Filho Physics Letters A 2001 11 16

[11] A. Gorban, I. Karlin, A. Zinovyev Physica A 2004 106 154

[12] A.N. Gorban, P.A. Gorban, G. Judge Entropy 2010 1145 1193

[13] W.M. Haddad, V. Chellaboina, Q. Hui. Nonnegative and Compartmental Dynamical Systems. Princeton University Press, 2010.

[14] A. Halanay, V. Rasvan. Applications of Liapunov methods in stability. Kluwer Academic Publichers, Dordrecht, 1993.

[15] K.M. Hangos, J. Bokor, G. Szederkényi. Analysis and control of nonlinear process systems. Springer, London, 2004.

[16] K. Hangos, G. Szederkényi. The effect of conservation on the dynamics of chemical reaction networks. In: Proceedings of IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory. Lyon, France, July 13-16, 2013, 30–35.

[17] V. Hárs, J. Tóth. On the inverse problem of reaction kinetics. In: Qualitative Theory of Differential Equations, ser. Coll. Math. Soc. J. Bolyai, M. Farkas and L. Hatvani, Eds. North-Holland, Amsterdam, vol. 30 (1981), 363–379.

[18] B. Hernández-Bermejo, V. Fairén Math. Biosci. 1997 1 32

[19] B. Hernández-Bermejo, V. Fairén, L. Brenig J. Phys. A. Math. Gen. 1997 2415 2430

[20] B. Hernández-Bermejo, V. Fairén Physics Letters A 1995 31 37

[21] J.M. van den Hof. System theory and system identification of compartmental systems. Ph.D. dissertation, University of Groningen, 1996.

[22] F. Horn, R. Jackson Archive for Rational Mechanics and Analysis 1972 81 116

[23] J. Jacquez, C. Simon SIAM Review 1993 43 79

[24] M.D. Johnston, D. Siegel Journal of Mathematical Chemistry 2011 1263 1282

[25] M.D. Johnston, D. Siegel, G. Szederkényi Mathematical Biosciences 2013 88 98

[26] E. Kaszkurewicz, A. Bhaya. Matrix Diagonal Stability in Systems and Computation. Boston, Birkhauser, 2000.

[27] V. Rasvan Archivum Mathematicum 1998 207 215

[28] N. Samardzija, L.D. Greller, E. Wassermann Journal of Chemical Physics 1989 2296 2304

[29] A. Van Der Schaft, S. Rao, B. Jayawardhana SIAM Journal on Applied Mathematics 2013 953 973

[30] G. Szederkényi, K.M. Hangos, A. Magyar Physics Letters A 2005 288 294

[31] B. Ydstie, A. Alonso Systems and Control Letters 1997 253 264

Cité par Sources :