Voir la notice de l'article provenant de la source EDP Sciences
K.M. Hangos 1 ; A. Magyar 2 ; G. Szederkényi 3
@article{10_1051_mmnp_201510309,
author = {K.M. Hangos and A. Magyar and G. Szederk\'enyi},
title = {Entropy-inspired {Lyapunov} {Functions} and {Linear} {First} {Integrals} for {Positive} {Polynomial} {Systems}},
journal = {Mathematical modelling of natural phenomena},
pages = {105--123},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2015},
doi = {10.1051/mmnp/201510309},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510309/}
}
TY - JOUR AU - K.M. Hangos AU - A. Magyar AU - G. Szederkényi TI - Entropy-inspired Lyapunov Functions and Linear First Integrals for Positive Polynomial Systems JO - Mathematical modelling of natural phenomena PY - 2015 SP - 105 EP - 123 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510309/ DO - 10.1051/mmnp/201510309 LA - en ID - 10_1051_mmnp_201510309 ER -
%0 Journal Article %A K.M. Hangos %A A. Magyar %A G. Szederkényi %T Entropy-inspired Lyapunov Functions and Linear First Integrals for Positive Polynomial Systems %J Mathematical modelling of natural phenomena %D 2015 %P 105-123 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510309/ %R 10.1051/mmnp/201510309 %G en %F 10_1051_mmnp_201510309
K.M. Hangos; A. Magyar; G. Szederkényi. Entropy-inspired Lyapunov Functions and Linear First Integrals for Positive Polynomial Systems. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 105-123. doi: 10.1051/mmnp/201510309
[1] European Journal of Control 2009 398 406
[2] Journal of Mathematical Physics 1986 305 308
[3] , Phys. Rev. A 1989 4119 4122
[4] V. Bykov, A. Gorban, G. Yablonskii, V. Elokhin. Kinetic models of catalytic reactions. In: R. Compton (ed.): Comprehensive Chemical Kinetics, vol. 32. Elsevier, Amsterdam, 1991.
[5] , , , IEEE Control Systems Magazine 2009 60 78
[6] Chemical Engineering Science 1999 3909 3915
[7] , Archive for Rational Mechanics and Analysis 1977 83 97
[8] Chemical Engineering Science 1987 2229 2268
[9] , , Physics Letters A 2000 335 341
[10] , , Physics Letters A 2001 11 16
[11] , , Physica A 2004 106 154
[12] , , Entropy 2010 1145 1193
[13] W.M. Haddad, V. Chellaboina, Q. Hui. Nonnegative and Compartmental Dynamical Systems. Princeton University Press, 2010.
[14] A. Halanay, V. Rasvan. Applications of Liapunov methods in stability. Kluwer Academic Publichers, Dordrecht, 1993.
[15] K.M. Hangos, J. Bokor, G. Szederkényi. Analysis and control of nonlinear process systems. Springer, London, 2004.
[16] K. Hangos, G. Szederkényi. The effect of conservation on the dynamics of chemical reaction networks. In: Proceedings of IFAC Workshop on Thermodynamic Foundations of Mathematical Systems Theory. Lyon, France, July 13-16, 2013, 30–35.
[17] V. Hárs, J. Tóth. On the inverse problem of reaction kinetics. In: Qualitative Theory of Differential Equations, ser. Coll. Math. Soc. J. Bolyai, M. Farkas and L. Hatvani, Eds. North-Holland, Amsterdam, vol. 30 (1981), 363–379.
[18] , Math. Biosci. 1997 1 32
[19] , , J. Phys. A. Math. Gen. 1997 2415 2430
[20] , Physics Letters A 1995 31 37
[21] J.M. van den Hof. System theory and system identification of compartmental systems. Ph.D. dissertation, University of Groningen, 1996.
[22] , Archive for Rational Mechanics and Analysis 1972 81 116
[23] , SIAM Review 1993 43 79
[24] , Journal of Mathematical Chemistry 2011 1263 1282
[25] , , Mathematical Biosciences 2013 88 98
[26] E. Kaszkurewicz, A. Bhaya. Matrix Diagonal Stability in Systems and Computation. Boston, Birkhauser, 2000.
[27] Archivum Mathematicum 1998 207 215
[28] , , Journal of Chemical Physics 1989 2296 2304
[29] , , SIAM Journal on Applied Mathematics 2013 953 973
[30] , , Physics Letters A 2005 288 294
[31] , Systems and Control Letters 1997 253 264
Cité par Sources :