Voir la notice de l'article provenant de la source EDP Sciences
Hans G. Kaper 1 ; Tasso J. Kaper 2 ; Antonios Zagaris 3
@article{MMNP_2015_10_3_a2, author = {Hans G. Kaper and Tasso J. Kaper and Antonios Zagaris}, title = {Geometry of the {Computational} {Singular} {Perturbation} {Method}}, journal = {Mathematical modelling of natural phenomena}, pages = {16--30}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2015}, doi = {10.1051/mmnp/201510303}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510303/} }
TY - JOUR AU - Hans G. Kaper AU - Tasso J. Kaper AU - Antonios Zagaris TI - Geometry of the Computational Singular Perturbation Method JO - Mathematical modelling of natural phenomena PY - 2015 SP - 16 EP - 30 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510303/ DO - 10.1051/mmnp/201510303 LA - en ID - MMNP_2015_10_3_a2 ER -
%0 Journal Article %A Hans G. Kaper %A Tasso J. Kaper %A Antonios Zagaris %T Geometry of the Computational Singular Perturbation Method %J Mathematical modelling of natural phenomena %D 2015 %P 16-30 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510303/ %R 10.1051/mmnp/201510303 %G en %F MMNP_2015_10_3_a2
Hans G. Kaper; Tasso J. Kaper; Antonios Zagaris. Geometry of the Computational Singular Perturbation Method. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 16-30. doi : 10.1051/mmnp/201510303. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510303/
[1] T.M.K. Coles, H.N Najm, Y.M. Marzouk. CSP simplification of chemical kinetic systems under uncertainty. In: Proc. Third IWMRRF. Corfu, Greece, April 27-29, 2011, 331–334.
[2] Combust. Theor. Model. 2012 173 198
, , , , ,[3] J. Chem. Phys. 1999 859 874
,[4] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov. Modern Geometry – Methods and Applications, vol. 2. Graduate Texts in Mathematics, 104. Springer-Verlag, New York, 1985.
[5]
1979 53 98[6] Chem. Eng. Sci. 2003 4751 4768
,[7] A.N. Gorban, I.V. Karlin. Invariant Manifolds for Physical and Chemical Kinetics. Springer, Berlin, 2004.
[8] Bulletin Amer. Math. Soc. 2014 187 246
,[9] Phys. Reports 2004 197 403
, ,[10] A.N. Gorban, N. Kazantzis, Y.G. Kevrekidis, H.C. Ottinger, and C. Theodoropoulos (eds.). Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena. Springer, Berlin, 2006.
[11] D.A. Goussis, S.H. Lam. A study of homogeneous methanol oxidation kinetics using CSP. In: Proceedings of the Twenty-Fourth Symposium (International) on Combustion, The University of Sydney, Sydney, Australia, July 5–10, 1992. The Combustion Institute, Pittsburgh, 1992, 113–120.
[12] D. Goussis, U. Maas. Model reduction for combustion chemistry. In: Turbulent Combustion Modeling, Fluid Mechanics and Its Applications, vol. 95. Springer, (2011), 193–220.
[13] Multiscale Model. Sim. 2006 1297 1332
,[14] J. Comp. Phys. 2006 316 346
,[15] S. Gupta. High-Fidelity Simulation and Analysis of Ignition Regimes and Mixing Characteristics for Low Temperature Combustion Engine Applications. Ph.D. Thesis, U. Michigan, 2012.
[16] SIAM J. Sci. Comput. 1999 781 810
,[17] Fed. Eur. Biochem. Soc. J. 2009 5491 5506
, , ,[18] C.K.R.T. Jones. Geometric singular perturbation theory. In: Dynamical Systems, Montecatini Terme, L. Arnold, Lecture Notes in Mathematics, 1609. Springer-Verlag, Berlin, 1994, 44–118.
[19] Physica D 2002 66 93
,[20] Comp. Math. Appl. 2013 1516 1534
, ,[21] Physica D 2010 1798 1817
, ,[22] Combust. Sci. Tech. 1993 375 404
[23] Combust. Sci. Tech. 2007 767 786
[24] S.H. Lam, D.A. Goussis. Understanding complex chemical kinetics with computational singular perturbation. In: Proceedings of the Twenty-Second Symposium (International) on Combustion, The University of Washington, Seattle, Washington, August 14–19, 1988. The Combustion Institute, Pittsburgh, 1988, 931–941.
[25] S.H. Lam, D.A. Goussis. Conventional asymptotics and computational singular perturbation theory for simplified kinetics modeling. In: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, M. Smooke (ed.). Lecture Notes in Physics, 384. Springer-Verlag, New York, 1991, Chapter 10.
[26] Internat. J. Chem. Kin. 1994 461 486
,[27] Reduction of the RACM scheme using CSP in atmospheric chemistry modeling. J Geophys. Res. - Atmos. 2006 1 16
, ,[28] Combust. Flame 2001 1445 1455
, ,[29] Combust. Theor. Model. 1999 233 257
, , ,[30] Atmos. Environ. 2004 3661 3673
, , ,[31] P.J. Olver. Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107. Springer-Verlag, New York, 1986.
[32] Combust. Flame 2006 29 51
, , , ,[33] J. Comp. Phys. 2005 754 786
, , ,[34] J. Comput. Phys. 2001 44 79
,[35] Combust. Flame 2003 35 53
, ,[36] J. Nonlin. Sci. 2004 59 91
, ,[37] Multiscale Model. Sim. 2004 613 638
, ,[38]
, , 2005 1629 1642Cité par Sources :