Prediction and Predictability in Population Biology: Noise and Chaos
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 2, pp. 142-164.

Voir la notice de l'article provenant de la source EDP Sciences

To determine best predictors and quantify prediction insecurities we investigate an analytically solvable stochastic system from epidemiology in which the time dependent solution of the model, the likelihood function and Bayesian posterior among other quantities can be calculated explicitly as function of given data. We give analytical expressions for the prediction probability conditioned on best estimators of parameters versus conditioned on data only, and marginalized over the parameters, and observe that the prediction insecurity is wider in the second case of conditioning on the data only, as it should be done in empirical studies. Though the concept becomes clear in the analytical study the differences between prediction based on data directly and prediction based on best estimates of parameters is small due to the simplicity of the model which allowed the analytic treatment. In an only slightly more complex model which however already cannot be treated analytically we clearly observe the expected large differences between the two predictions. Finally, we discuss additional aspects in more extended stochastic population biological systems which do not only exhibit fixed point dynamics but also bifurcations into deterministic chaos with short term predictability and long term unpredictability as quantified by the characteristic exponent, the largest Lyapunov exponent. All is developed in a unified framework of time dependent and state discrete stochastic processes typical for many population biological systems, in ecology and in epidemiology, and can also incorporate non-exponential waiting times by simply including more intermediate classes between transitions.
DOI : 10.1051/mmnp/201510210

N. Stollenwerk 1 ; L. Mateus 1 ; F. Rocha 1 ; U. Skwara 1, 2 ; P. Ghaffari 1, 3 ; M. Aguiar 1

1 Centro de Matemática e Aplicações Fundamentais, Universidade de Lisboa, Portugal
2 Department of Mathematics, Maria Curie-Sk?odowska University, Lublin, Poland
3 Complexity and Networks Group, Imperial College London, United Kingdom
@article{MMNP_2015_10_2_a9,
     author = {N. Stollenwerk and L. Mateus and F. Rocha and U. Skwara and P. Ghaffari and M. Aguiar},
     title = {Prediction and {Predictability} in {Population} {Biology:} {Noise} and {Chaos}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {142--164},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     doi = {10.1051/mmnp/201510210},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510210/}
}
TY  - JOUR
AU  - N. Stollenwerk
AU  - L. Mateus
AU  - F. Rocha
AU  - U. Skwara
AU  - P. Ghaffari
AU  - M. Aguiar
TI  - Prediction and Predictability in Population Biology: Noise and Chaos
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 142
EP  - 164
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510210/
DO  - 10.1051/mmnp/201510210
LA  - en
ID  - MMNP_2015_10_2_a9
ER  - 
%0 Journal Article
%A N. Stollenwerk
%A L. Mateus
%A F. Rocha
%A U. Skwara
%A P. Ghaffari
%A M. Aguiar
%T Prediction and Predictability in Population Biology: Noise and Chaos
%J Mathematical modelling of natural phenomena
%D 2015
%P 142-164
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510210/
%R 10.1051/mmnp/201510210
%G en
%F MMNP_2015_10_2_a9
N. Stollenwerk; L. Mateus; F. Rocha; U. Skwara; P. Ghaffari; M. Aguiar. Prediction and Predictability in Population Biology: Noise and Chaos. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 2, pp. 142-164. doi : 10.1051/mmnp/201510210. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510210/

[1] M. Aguiar, S. Ballesteros, B. Kooi, N. Stollenwerk Jounal of Theoretical Biology 2011 181 196

[2] M. Aguiar, N. Stollenwerk, B. Kooi Math. Model. Nat. Phenom. 2012 1 11

[3] M. Aguiar, N. Stollenwerk, B. Kooi Intern. Journal of Computer Mathematics 2009 1867 77

[4] F. Drepper, R. Engbert, N. Stollenwerk Ecological Modelling 1994 171 181

[5] C.W. Gardiner. Handbook of stochastic methods. Springer, New York, 1985.

[6] D.T. Gillespie Journal of Computational Physics 1976 403 434

[7] D.T. Gillespie Journal of Computational Physics 1978 395 407

[8] J. Honerkamp. Stochastic Dynamical Systems: Concepts, Numerical Methods and Data Analysis. VCH Publishers, Heidelberg, New York, 1993.

[9] D. MacKay. (2005) Information theory, inference, and learning algorithms. Cambridge University Press, Cambridge, 2005.

[10] L. Mateus, N. Stollenwerk, J.C. Zambrini Int. Journal. Computer Math. 2013 2161 2173

[11] D.S. Sivia. Data analysis: A Bayesian tutorial. Oxford University Press, Oxford, 1996.

[12] N. Stollenwerk, M. Aguiar, S. Ballesteros, J. Boto, B. Kooi, L. Mateus Roy. Soc. Interface Focus 2012 156 169

[13] N. Stollenwerk, K. Briggs Physics Letters, A 2000 84 91

[14] N. Stollenwerk, F. Drepper, H. Siegel Ecological Modelling 2001 261 277

[15] N. Stollenwerk, V. Jansen. Population biology and criticality. Imperial College Press, London, 2011.

[16] N. Stollenwerk, S. Van Noort, J. Martins, M. Aguiar, F. Hilker, A. Pinto, G. Gomes Journal of Biological Dynamics 2010 634 649

[17] N.G. van Kampen. Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam, 1992.

Cité par Sources :