Variational Principle for Self-replicating Systems
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 2, pp. 115-128.

Voir la notice de l'article provenant de la source EDP Sciences

The biological theory of natural selection is the key idea for understanding optimality in biology. Selection processes are the base of variational principles in modern biological theory. Biological variational principles are most justified when they are the consequence of selection processes. But the use of the variational principles for explaining strategies of behavior of living species is a difficult problem. In this paper, an order of preference is introduced on the set of hereditary strategies of behavior in general self-replicating systems as a result of selection. The introduced order of preference is expressed with the help of the comparison criterion, which is an optimality criterion in self-replicating systems. The comparison is made between all kinds of continuous functions of behavior rather than between some discrete collections of variations. Maximization of this criterion is a variational principle in general self-replicating systems. The newly introduced selection criterion has a series of peculiarities, which are analyzed in this article. One of them is the outcome dependence on initial conditions; in particular the criterion value does not satisfy transitivity while changing the initial conditions. The second feature is the result of the velocity dependence of transients during adaptation. Besides, sometimes the best strategy from the standpoint of the criterion can lead to the system extinction. Methods of accounting of these peculiarities are proposed for optimization of self-replicating systems.
DOI : 10.1051/mmnp/201510208

O. Kuzenkov 1 ; E. Ryabova 1

1 Lobachevsky State University of Nizhni Novgorod
@article{MMNP_2015_10_2_a7,
     author = {O. Kuzenkov and E. Ryabova},
     title = {Variational {Principle} for {Self-replicating} {Systems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {115--128},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     doi = {10.1051/mmnp/201510208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510208/}
}
TY  - JOUR
AU  - O. Kuzenkov
AU  - E. Ryabova
TI  - Variational Principle for Self-replicating Systems
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 115
EP  - 128
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510208/
DO  - 10.1051/mmnp/201510208
LA  - en
ID  - MMNP_2015_10_2_a7
ER  - 
%0 Journal Article
%A O. Kuzenkov
%A E. Ryabova
%T Variational Principle for Self-replicating Systems
%J Mathematical modelling of natural phenomena
%D 2015
%P 115-128
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510208/
%R 10.1051/mmnp/201510208
%G en
%F MMNP_2015_10_2_a7
O. Kuzenkov; E. Ryabova. Variational Principle for Self-replicating Systems. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 2, pp. 115-128. doi : 10.1051/mmnp/201510208. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510208/

[1] A. C. Allison Br. Med. J. 1954 290 294

[2] R. R. Baker. The Evolutionary Ecology of Animal Migration. Holmes and Meier, New York, 1978.

[3] A. D. Bazykin. Nonlinear Dynamics of Interacting Populations. World Scientific publishing, Singapore, 1998.

[4] I. M. Bomze Biol. Cybernetics 1983 201 211

[5] A. S. Bratus, A. S. Novozhilov, A. P. Platonov. Dynamical Systems and Models in Biology. FizmMatLit, Moscow, 2010 [in Russian].

[6] A. S. Bratus, V. P. Posvyanskii, A. S. Novozhilov Mathematical Biosciences and Engineering (MBE) 2011 659 676

[7] D. S. Chernavskii. Synergetics and Information. Dynamic Information Theory. Editorial URSS, Minsk, 2004 [in Russian].

[8] D. S. Chernavskii, N. M. Chernavskaya J Theor Biol. 1975 13 23

[9] C. W. Clark, M. Mangel. Dynamic State Variable Models in Ecology: Methods and Applications. Oxford Series in Ecology and Evolution. Oxford University Press, 2000.

[10] R. Cressman. Evolutionary Dynamics and Existence Form Games. MIT Press, Cambridge, 2003.

[11] Ch. Darwin. On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. A Facsimile of the First Edition. Harvard University Press, Cambridge MA, 1964.

[12] R. Dawkins. Universal Darwinism. In: Evolution from molecules to man, ed. D. S. Bendall. Cambridge University Press, 1983.

[13] P. J. De Coursey. Biological Rhythms in the Marine Environment. Univ. South Carolina Press, Columbia, SC, 1976.

[14] M. Eigen Naturwissenschaften 1971 465 523

[15] R. A. Fisher. The Genetical Theory of Natural Selection: A Complete Variorum Edition. Oxford: Oxford University Press, 1999.

[16] P. Fluri, R. Frick Bee world 2002 109 118

[17] A. Gabriel, J. Przybylski Nature Education 2

[18] A. N. Gorban. Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis. Nauka, Novosibirsk, 1984 [in Russian].

[19] A. N. Gorban Math. Model. Nat. Phenom. 2007 1 45

[20] A. N. Gorban, R. G. Khlebopros. Demon of Darwin: Idea of optimality and natural selection. Nauka (FizMatGiz), Moscow, 1988 [in Russian].

[21] J. B. S. Haldane. The Causes of Evolution. Princeton Science Library, Princeton University Press, 1990.

[22] M. A. Hanin. Energy and optimality criteria developmental processes. in Mathematical Biology development, 177-187, Nauka, Moscow, 1982 [in Russian].

[23] M. A. Hanin, N. L. Dorfman. Natural selection and extremum principle. in Thermodynamics and kinetics of biological process. Nauka, Moscow, 1980 [in Russian].

[24] J. Hofbauer, K. Sigmund Bull. (New Series) American Math. Soc. 2003 479 519

[25] G. E. Insarov. Stepped model of growth and reproduction of organisms. in Quantitative aspects of the growth of organisms. Nauka, Moscow, 1975 [in Russian].

[26] G. P. Karev J. of Mathematical Biology 2010 107 129

[27] G. P. Karev Bull Math Biol 2010 1124 1142

[28] G. P. Karev, I. G. Kareva Math. Model. Nat. Phenom. 2014 68 95

[29] G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya Math Med Biol 2011 89 110

[30] A. Y. Klimenko Entropy 2014 1 22

[31] O. A. Kuzenkov. Mathematical modelling selection processes. Mathemtical modelling and optimal control, Lobachevsky State University: Nizhnii Novgorod (1994), 120–131 [in Russian].

[32] O. A. Kuzenkov Differential Equations 1995 549 554

[33] O. A. Kuzenkov Automation and Remote Control 2006 1028 1038

[34] O. A. Kuzenkov Journal of Computer and Systems Sciences International 2009 839 846

[35] O. A. Kuzenkov, G. V. Kuzenkova Journal of Computer and Systems Sciences International 2012 500 511

[36] O. A. Kuzenkov, E. A. Ryabova, K. R. Krupoderova. Mathematical models of selection processes. Lobachevsky State University: Nizhni Novgorod, 2012 [in Russian]. Available online at http://www.unn.ru/books/met files/kuzryab.pdf

[37] O. A. Kuzenkov, E. A. Ryabova. Mathematical modeling of selection processes. Lobachevsky State University: Nizhnii Novgorod, 2007 [in Russian].

[38] T. R. Malthus. An essay on the principal of Population. Penguin Books, 1985.

[39] J. Mylius, O. Diekmann. On evolutionary stable life histories, optimization and the need to be specific about density dependence. OIKOS 74, 218–224, Copenhagen, 1995.

[40] D. W. Narver J. Fish. Res. Board Can 1970 281 316

[41] J. Neumann. Theory of Self-Reproducing Automata. Univ. of Illinois Press, Urbana, 1966.

[42] G. Parker, J. M. Smith Nature 1990 27 33

[43] K. Parvinen Acta Biotheoretica 2005 241 264

[44] K. Parvinen Math. Model. Nat. Phenom. 2014 124 137

[45] Y. A. Pykh. Equilibrium and stability in models of population dynamics. Nauka, Moscow, 1983 [in Russian].

[46] P. Racsko, M. Semenov Ecological Modelling 1989 291 302

[47] M. Romanovsky, N. Stepanov, D. Chernavskii. Mathematical modeling in biophysics. Nauka, Moscow, 1975 [in Russian].

[48] R. Rosen. Optimality Principles in Biology. Butterworths, London, 1967.

[49] L. I. Rozonoer, E. I. Sedyh Automation and Remote Control 1979 243 251

[50] F. N. Semevsky and S. M. Semenov. Mathematical modeling of ecological processes. Gidrometeoizdat, Leningrad, 1982 [in Russian].

[51] J. M. Smith. Evolution and the theory of games. Cambridge Univ. Press, Cambridge, 1982.

[52] Y. M. Svirezhev J. of General Biology 1991 840 853

[53] Y. M. Svirezhev, D. O. Logofet. Stability of biological communities. Nauka, Moscow, 1978 [in Russian].

[54] P. D. Taylor, L. B. Jonker Math. Biosci. 1978 145 156

[55] A. T. Teriokhin Evolutionary Ecology 1998 291 307

[56] A. T. Teriokhin. Optimization modeling the evolution of the life cycle. Dissertation for the degree of Doctor of Biological Sciences. Lomonosov Moscow State University, Moscow, 2001 [in Russian].

[57] P. F. Verhulst Corr. Math. et Phys. 1838 113 121

[58] V. Volterra. Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Paris, 1931

[59] S. Wright. Evolution: Selected Papers. University of Chicago Press, Chicago, 1986.

[60] L. C. Young. Lectures on the Calculus of Variations and Optimal Control Theory. Philadelphia, 1969.

[61] T. M. Zaret. Predation and Freshwater Communities. Yale Univ. Press, New Haven, CT, 1980.

[62] E. C. Zeeman. Population dynamics from game theory. in Global theory of dynamical systems. Lecture notes in mathematics. vol. 819. Springer Berlin Heidelberg, 1980.

[63] B. Zeide Ecological Modelling 1991 161 174

Cité par Sources :