Dynamical Behavior of a Stochastic SIRS Epidemic Model
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 2, pp. 56-73.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we study the Kernack - MacKendrick model under telegraph noise. The telegraph noise switches at random between two SIRS models. We give out conditions for the persistence of the disease and the stability of a disease free equilibrium. We show that the asymptotic behavior highly depends on the value of a threshold λ which is calculated from the intensities of switching between environmental states, the total size of the population as well as the parameters of both SIRS systems. According to the value of λ, the system can globally tend towards an endemic state or a disease free state. The aim of this work is also to describe completely the ω-limit set of all positive solutions to the model. Moreover, the attraction of the ω-limit set and the stationary distribution of solutions will be shown.
DOI : 10.1051/mmnp/201510205

N. T. Hieu 1, 2, 3 ; N. H. Du 2 ; P. Auger 3 ; N. H. Dang 4

1 Ecole doctorale Pierre Louis de santé publique, Université Pierre et Marie Curie, France
2 Faculty of Mathematics, Informatics and Mechanics, Vietnam National University 334 Nguyen Trai road, Hanoi, Vietnam.
3 UMI 209 IRD UMMISCO, Centre IRD France Nord 32 avenue Henri Varagnat, 93143 Bondy cedex, France.
4 Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
@article{MMNP_2015_10_2_a4,
     author = {N. T. Hieu and N. H. Du and P. Auger and N. H. Dang},
     title = {Dynamical {Behavior} of a {Stochastic} {SIRS} {Epidemic} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {56--73},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     doi = {10.1051/mmnp/201510205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510205/}
}
TY  - JOUR
AU  - N. T. Hieu
AU  - N. H. Du
AU  - P. Auger
AU  - N. H. Dang
TI  - Dynamical Behavior of a Stochastic SIRS Epidemic Model
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 56
EP  - 73
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510205/
DO  - 10.1051/mmnp/201510205
LA  - en
ID  - MMNP_2015_10_2_a4
ER  - 
%0 Journal Article
%A N. T. Hieu
%A N. H. Du
%A P. Auger
%A N. H. Dang
%T Dynamical Behavior of a Stochastic SIRS Epidemic Model
%J Mathematical modelling of natural phenomena
%D 2015
%P 56-73
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510205/
%R 10.1051/mmnp/201510205
%G en
%F MMNP_2015_10_2_a4
N. T. Hieu; N. H. Du; P. Auger; N. H. Dang. Dynamical Behavior of a Stochastic SIRS Epidemic Model. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 2, pp. 56-73. doi : 10.1051/mmnp/201510205. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510205/

[1] J. R. Artalejo, A. Economou, M. J. Lopez-Herrero J. Math. Biol. 2013 799 831

[2] N. Bacaer, E. H. Ait Dads J. Math. Biol. 2012 60 621

[3] N. Bacaer, M. G. M. Gomes Bull. Math. Biol. 2009 1954 1966

[4] M. Bradonjic MMNP 2014 82 88

[5] F. Brauer, C. Castillo-Chavez. Mathematical Models in Population Biology and Epidemiology. Second Edition, Springer 2011.

[6] F. Brauer, P. v. d. Driessche, J. Wu. Mathematical Epidemiology. Springer 2008.

[7] Z. Brzeniak, M. Capifiski, F. Flandoli Probab. Theory Rel. 1993 87 102

[8] V. Capasso. Mathematical Structures of Epidemic Systems. Springer-Verlag 1993.

[9] H. Crauel, F. Flandoli Probab. Theory Rel. 1994 365 393

[10] N. H. Dang, N. H. Du, G. Yin J. Differ. Equations 2014 2078 2101

[11] N. H. Du, N. H. Dang Commun. Pure Appl. Anal. 2014 2693 2712

[12] N. H. Du, N. H. Dang J. Differ. Equations 2011 386 409

[13] A. Friedman. Epidemiological models with seasonality. Mathematical methods and models in biomedicine, 389-410, Lect. Notes Math. Model. Life Sci., Springer, New York, 2013.

[14] I.I Gihman and A.V. Skorohod. The Theory of Stochastic Processes. Springer-Verlag Berlin Heidelberg New York 1979.

[15] A. Gray, D. Greenhalgh, X. Mao, J. Pan J. Math. Anal. Appl. 2012 496 516

[16] H. W. Hethcote Math. Biosci. 1976 335 356

[17] T. House MMNP 2014 153 160

[18] C. Ji, D. Jiang, N. Shi Stoch. Anal. Appl. 2012 755 773

[19] A. Lahrouz, A. Settati Appl. Math. Comput. 2013 11134 11148

[20] E. K. Leah. Mathematical Models In Biology. SIAM’s Classics in Applied Mathematics 46, 2005.

[21] A. C. Lowen, S. Mubareka, J. Steel, P. Palese PLoS Pathog 2007 1470 1476

[22] X. Mao Nonlinear Anal.-Theor. 2001 4795 4806

[23] R. M. May Am. Sci. 1983 36 45

[24] S. P. Meyn, R. L. Tweedie Adv. Appl. Prob. 1993 518 548

[25] J. D. Murray. Mathematical Biology. Springer Verlag, Heidelberg, 1989.

[26] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, New York, 1991.

[27] K. Pichór, R. Rudnicki J. Math. Anal. Appl. 2000 668 685

[28] L. Stettner. On the existence and uniqueness of invariant measure for continuous time Markov processes. LCDS Report, no. 86-16, April 1986, Brown University, Providence.

[29] C. L. Wesley, L. J. S. Allen J. Biol. Dyn. 2009 116 129

[30] C. Viboud, K. Pakdaman, P.-Y. Boelle, M. L. Wilson, M. F. Myers, A.-J. Valleron, A. Flahault Eur. J. Epidemiol. 2004 1055 1059

[31] C. Yuan, X. Mao Stoch Anal Appl 2006 1169 1184

[32] N. Ziyadi, A. Yakubu. Periodic incidence in a discrete-time SIS epidemic model. Mathematical methods and models in biomedicine, 411-427, Lect. Notes Math. Model. Life Sci., Springer, New York, 2013.

Cité par Sources :