Time Dependent Diffusion as a Mean Field Counterpart of Lévy Type Random Walk
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 2, pp. 5-26.

Voir la notice de l'article provenant de la source EDP Sciences

Insect trapping is commonly used in various pest insect monitoring programs as well as in many ecological field studies. An individual is said to be trapped if it falls within a well defined capturing zone, which it cannot escape. The accumulation of trapped individuals over time forms trap counts or alternatively, the flux of the population density into the trap. In this paper, we study the movement of insects whose dynamics are governed by time dependent diffusion and Lévy walks. We demonstrate that the diffusion model provides an alternative framework for the Cauchy type random walk (Lévy walk with Cauchy distributed steps). Furthermore, by calculating the trap counts using these two conceptually different movement models, we propose that trap counts for pests whose dynamics may be Lévy by nature can effectively be predicted by diffusive flux curves with time-dependent diffusivity.
DOI : 10.1051/mmnp/201510202

D. A. Ahmed 1 ; S. Petrovskii 1

1 Department of Mathematics, University of Leicester, University road, Leicester, LE1 7RH, UK
@article{MMNP_2015_10_2_a1,
     author = {D. A. Ahmed and S. Petrovskii},
     title = {Time {Dependent} {Diffusion} as a {Mean} {Field} {Counterpart} of {L\'evy} {Type} {Random} {Walk}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2015},
     doi = {10.1051/mmnp/201510202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510202/}
}
TY  - JOUR
AU  - D. A. Ahmed
AU  - S. Petrovskii
TI  - Time Dependent Diffusion as a Mean Field Counterpart of Lévy Type Random Walk
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 5
EP  - 26
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510202/
DO  - 10.1051/mmnp/201510202
LA  - en
ID  - MMNP_2015_10_2_a1
ER  - 
%0 Journal Article
%A D. A. Ahmed
%A S. Petrovskii
%T Time Dependent Diffusion as a Mean Field Counterpart of Lévy Type Random Walk
%J Mathematical modelling of natural phenomena
%D 2015
%P 5-26
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510202/
%R 10.1051/mmnp/201510202
%G en
%F MMNP_2015_10_2_a1
D. A. Ahmed; S. Petrovskii. Time Dependent Diffusion as a Mean Field Counterpart of Lévy Type Random Walk. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 2, pp. 5-26. doi : 10.1051/mmnp/201510202. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510202/

[1] D. Ahmed. Stochastic and Mean field approaches for trap count modelling and interpretation. PhD thesis, Leicester University, (2014).

[2] R. Balescu. Equilibrium and Non-equilibrium Statistical Mechanics. New York: John Wiley, 1975.

[3] F. Bartumeus, J. Catalan, G. Viswanathan, E. Raposo, M. Da Luz J. Theor. Biol. 2008 43 55

[4] B. Berkowitz, H. Scher Phys. Rev. E 1998 5858 5869

[5] I. Blumen, J. Klafter Europhys. Lett. 1999 152 157

[6] J. Bouchaud, A. Georges Phys. Rep. 1990 127 293

[7] P. Bovet, S. Benhamou J. Theor. Biol. 1988 419 433

[8] K. Burnham, D. Anderson. Model selection and multimodel inference: a practical information theoretical approach. Springer, 2002.

[9] S. Cantrell, C. Cosner. Spatial ecology via reaction and diffusion equations. Wiley John and Sons, 2003.

[10] J. Q. Chambers, N. Higuchi, J. P. Schimel Nature 1998 135 136

[11] E. Charnov. Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology. Oxford Univ. Press, 1993.

[12] E. Codling, M. Plank, S. Benhamou J. R. Soc. Interface 2008 813 834

[13] S. Coscoy, E. Huguet, F. Amblard Bull. Math. Biol. 2007 2467 2492

[14] J. Crank. The mathematics of diffusion. Oxford Univ. Press, 2nd edn., 1975.

[15] P. Davis, P. Rabinowitz. Methods of numerical integration. New York: Academic Press, 1975.

[16] M. De Jager, F. Weissing, P. Herman, B. Nolet, J. Vande Koppel Science 2012 918

[17] J. Dennis, D. Gay, R. Walsh ACM Trans. Math. Soft. 1981 348 368

[18] J. Durbin Biometrika 1950 409 428

[19] N. Embleton, N. Petrovskaya Bull. Math. Biol. 2014 718 743

[20] A. Fick Annalen der Physik 1855 59 86

[21] R. Fisher Annals of Eugenics 1937 355 369

[22] L. Giuggioli, F. Sevilla, V. Kenkre J. Phys. 2009 434 444

[23] N. Gotelli, A. Ellison. A primer of ecological statistics. Sunderland: Sinauer Associates, 2004.

[24] J. P. Grime, R. Hunt Ecology 1975 393 422

[25] R. S. Grimm, V. Individual based modelling and Ecology. Princeton Univ. Press, 2005.

[26] R. Grimmet, D. Stirzaker. Probability and random processes. Oxford Univ. Press, 2001.

[27] E. Holmes, M. Lewis, J. Banks, R. Veit Ecology 1994 17 29

[28] V. Jansen, A. Mashanova, S. Petrovskii Science 2012 918

[29] F. Jopp, H. Reuter Ecol. Model. 2005 389 405

[30] P. Kareiva Oecologia 1983 322 327

[31] P. Kareiva, N. Shigesada Oecologia 1983 234 238

[32] R. Kawai J. Phys. A: Math. Theor. 2012 235004

[33] M. Kot, M. Lewis, P. Van Der Driessche Ecology 1996 2027 2042

[34] H. Malchow, S. Petrovskii, E. Venturino. Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulations. Chapman Hall/CRC, 2008.

[35] R. Metzler, J. Klafter Phys. Rep. 2000 1 77

[36] R. Metzler, J. Klafter J. Phys. A: Math. Gen. 2004 161 208

[37] E. Montroll, G. Weiss J. Math. Phys. 1965 167 181

[38] J. Morales, D. Haydon, J. Frair, K. Holsinger, J. Fryxell Ecology 2004 2436 45

[39] N. Newlands, M. Lutcavage, T. Pitcher Popul. Ecol. 2004 39 53

[40] A. Okubo. Diffusion and ecological problems. Springer, New York, 1980.

[41] A. Okubo, H. Chiang Res. Popul. Ecol. 1974 1 42

[42] A. Okubo, S. Levin. Diffusion and ecological problems: modern perspectives. Springer, New York, 2001.

[43] A. Okubo, S. Levin. Some examples of animal diffusion. Springer-Verlag, 2001.

[44] J. Patrick. Computational fluid dynamics. Hermosa Publishers, 1976.

[45] N. Petrovskaya, S. Petrovskii, A. Murchie J. R. Soc. Interface 2011 420 435

[46] S. Petrovskii, D. Ahmed, R. Blackshaw Ecol. Complexity 2012 69 82

[47] S. Petrovskii, L. Brian. Exactly solvable models of biological invasion. Chapman and Hall/CRC, 2006.

[48] S. Petrovskii, A. Mashanova, V. Jansen Proc. Natl. Acad. Sci. USA. 2011 8704 8707

[49] S. Petrovskii, A. Morozov Am. Nat. 2008 278 289

[50] S. Petrovskii, N. Petrovskaya, D. Bearup Phys. Rev. 2014 467 525

[51] M. Plank, E. Codling Ecology 2009 3546 3553

[52] G. Radons, R. Klages, I. Sokolov. Anomalous transport. Berlin: Wiley-VCH, 2008.

[53] A. Reynolds J. Phys. A: Math. Theor. 2009 434006

[54] A. Reynolds J. R. Soc. Interface 2010 1753 1758

[55] P. Richards. The tropical rainforest. Cambridge Univ. Press, 2nd edn, 1996.

[56] L. Richardson Proc. R. Soc. London: Series A 1926 709 737

[57] H. Scher, M. Lax. Stochastic transport in a disordered solid. Phys. Rev. B, (1973) 4491–4502.

[58] H. Scher, E. Montroll Phys. Rev. B 1975 2455 2477

[59] H. Scher, M. Shlesinger, J. Bendler Phys. Today 1991 26 34

[60] N. Shigesada, K. Kawasaki. Biological invasions: theory and practice. Oxford Univ. Press, 1997.

[61] N. Shigesada, K. Kawasaki. Invasion and the range expansion of species: effects of long distance dispersal. Dispersal Ecology, (2002) 350–373.

[62] M. Shlesinger J. Stat. Phys. 1974 421 434

[63] M. Shlesinger J. Phys. A: Math. Theor. 2009 434001

[64] J. Skellem Biometrika 1951 196 218

[65] G. Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods (Oxford Applied Mathematics Computing Science Series). Oxford Univ. Press, 1986.

[66] S. Stearns. The Evolution of Life Histories. Oxford Univ. Press, 1992.

[67] V. Stern Entomol. 1973 259 280

[68] W. Strauss. Partial differential equations: An introduction. John Wiley and Sons, 2008.

[69] P. Tilles, S. Petrovskii. Statistical mechanics of animal movement: Animal’s decision making can result in super-diffusive spread. Ecol. Complexity, (2015). In Press, http://dx.doi.org/10.1016/j.ecocom.2015.02.006.

[70] D. Tilman. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton Univ. Press, 1988.

[71] P. Turchin. Quantitative analysis of movement: measuring and modelling population redistribution in animals and plants. Sinauer Associates, 1998.

[72] G. Viswanathan, V. Afanasyev, S. Buldryrev, S. Havlin, M. Da Luz, E. Raposo, H. Stanley Phys. A 2000 1 12

[73] G. Viswanathan, V. Afanasyev, S. Buldryrev, S. Havlin, R. da Luz, M., H. Stanley. The Physics of Foraging. Cambridge Univ. Press, 2011.

[74] E. Weeks, J. Urbach, H. Swinney Phys. D: Nonlinear Phen. 1996 291 310

[75] G. Weiss. Aspects and applications of the random walk. North Holland Press, 1994.

[76] G. Weiss, R. Rubin. Random walks: theory and selected applications. Adv. Chem. Phys., 1983.

[77] G. Zaslavsky, S. Benkadda. Chaos, Kinetics and Non-linear Dynamics in Fluids and Plasmas. Springer, Berlin, 1998.

Cité par Sources :