A Measure-Theoretic Model for Collective Cell Migration and Aggregation
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 1, pp. 4-35.

Voir la notice de l'article provenant de la source EDP Sciences

The aim of this paper is to present a measure-theoretic approach able to derive an Eulerian model of the dynamics of a cell population with a finite number of cells out of a microscopic Lagrangian description of the underlying cellular particle system. By looking at the spatial distribution of cells in terms of a time-evolving probability measure, rather than at individual cell paths, an ensemble representation of the cell colony is obtained, which can then result either in discrete, continuous, or hybrid approaches according to the spatial structure of such a probability measure. Remarkably, such an approach does not call for any assumption on the number of cells taken into account, thus providing consistency of the same modeling framework across all levels of representation. In addition, it is suitable to cope with the often ambiguous translation of microscopic arguments (i.e., cell dimensions and interaction radii) into macroscopic descriptions. The proposed approach, also extended to the case of multiple coexisting cell populations, is then tested with sample simulations that provide a useful sensitivity analysis of the model parameters.
DOI : 10.1051/mmnp/201510101

A. Colombi 1 ; M. Scianna 1 ; L. Preziosi 1

1 Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
@article{MMNP_2015_10_1_a1,
     author = {A. Colombi and M. Scianna and L. Preziosi},
     title = {A {Measure-Theoretic} {Model} for {Collective} {Cell} {Migration} and {Aggregation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {4--35},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2015},
     doi = {10.1051/mmnp/201510101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510101/}
}
TY  - JOUR
AU  - A. Colombi
AU  - M. Scianna
AU  - L. Preziosi
TI  - A Measure-Theoretic Model for Collective Cell Migration and Aggregation
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 4
EP  - 35
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510101/
DO  - 10.1051/mmnp/201510101
LA  - en
ID  - MMNP_2015_10_1_a1
ER  - 
%0 Journal Article
%A A. Colombi
%A M. Scianna
%A L. Preziosi
%T A Measure-Theoretic Model for Collective Cell Migration and Aggregation
%J Mathematical modelling of natural phenomena
%D 2015
%P 4-35
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510101/
%R 10.1051/mmnp/201510101
%G en
%F MMNP_2015_10_1_a1
A. Colombi; M. Scianna; L. Preziosi. A Measure-Theoretic Model for Collective Cell Migration and Aggregation. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 1, pp. 4-35. doi : 10.1051/mmnp/201510101. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510101/

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell, 4th ed. Garland Science, New York, 2002.

[2] A. R. A. Anderson, M. A. J. Chaplain, K. A. Rejniak, Eds. Single-cell-based models in biology and medicine. Birkäuser, Boston, 2007.

[3] A. R. A. Anderson, A. M. Weaver, P. T. Cummings, V. Quaranta Cell 2006 905 915

[4] N. Bellomo, B. Piccoli, A. Tosin Math. Methods Appl. Sci. 2012 1230004

[5] K. Böttger, H. Hatzikirou, A. Chauviere, A. Deutsch Math. Model. Nat. Phenom. 2012 105 135

[6] F. Bussolino, M. Arese, E. Audero, E. Giraudo, S. Marchio, S. Mitola, L. Primo, G. Serini, 2003. Biological aspects in tumor angiogenesis. In Preziosi, L., Ed., Cancer modeling and simulation, Mathematical Biology and Medicine Sciences, Chapman and Hall/CRC, 1–16.

[7] V. Capasso, D. Morale J. Math. Biol. 2009 219 233

[8] V. Capasso, D. Morale Stoch. Anal. Appl. 2009 574 603

[9] P. Carmeliet, R. K. Jain Nature 2000 249 257

[10] P. Carmeliet Nature 2005 932 936

[11] J. A. Carrillo, M. Fornasier, G. Toscani, F. Vecil (2010) Particle, kinetic, and hydrodynamic models of swarming, in Naldi, G., Pareschi, L. and Toscani, G., Eds., Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkäuser, 297–336.

[12] A. Chauviere, H. Hatzikirou, I. G. Kevrekidis, J. S. Lowengrub, V. Cristini AIP Advances 2012 011210

[13] A. Colombi, M. Scianna, A. Tosin. Differentiated cell behavior: A multiscale approach using measure theory. Submitted for publication. Preprint at arXiv:1108.1212.

[14] E. Cristiani, B. Piccoli, A. Tosin Multiscale Model. Simul. 2011 155 182

[15] E. Cristiani, P. Frasca, B. Piccoli J. Math. Biol. 2011 569 588

[16] E. Cristiani, B. Piccoli, A. Tosin. Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In G. Naldi, L. Pareschi, and G. Toscani, Eds., Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 337–364, 2010.

[17] V. Cristini, J. Lowengrub, Eds. Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, 2011.

[18] S. S. Cross J. Pathol. 1997 1 8

[19] A. Deutsch, S. Dormann. Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Birkäuser, Boston, 2005.

[20] D. Drasdo. On selected individual-based approaches to the dynamics of multicellular systems. In W. Alt and M. Griebel, Eds., Multiscale Modeling. Birkhäuser, Boston, 169–203, 2005.

[21] D. Drasdo Adv. Complex Syst. 2005 319 363

[22] D. Drasdo, S. Hohme Math. Comp. Model 2003 1163 1175

[23] H. B. Frieboes, F. Jin, Y. L. Chuang, S. M. Wise, J. S. Lowengrub, V. Cristini J. Theor. Biol. 2010 1254 1278

[24] P. Friedl, P. B. Noble, P. A. Walton, D. W. Laird, P. J. Chauvin, R. J. Tabah, M. Black, K. S. Zänker Cancer Res. 1995 4557 4560

[25] P. Friedl, D. Gilmour Nat. Rev. Mol. Cell. Biol. 2009 445 457

[26] F. Graner, J. A. Glazier Phys. Rev. Lett. 1992 2013 2017

[27] Y. Hegerfeldt, M. Tusch, E. B. Bröcker, P. Friedl Cancer Res. 2002 2125 2130

[28] O. Ilina, P. Friedl J. Cell Sci. 2009 3203 3208

[29] O. Ilina, G.-J. Bakker, A. Vasaturo, R. M. Hoffman, P. Friedl Phys. Biol. 2011 015010

[30] A. A. Khalila, P. Friedl Integr. Biol. 2010 568 574

[31] Y. Kim, H. G. Othmer Bull. Math. Biol. 2013 1304 1350

[32] Y. Kim, M. A. Stolarska, H. G. Othmer Math. Models Methods Appl. Sci. 2007 1773

[33] G. Landini, Y. Hirayama, T. J. Li, M. Kitano Pathol. Res. Pract. 2000 251 258

[34] P. Macklin, M. E. Edgerton, A. M. Thompson, V. Cristini J. Theor. Biol. 2012 122 140

[35] B. Piccoli, A. Tosin Arch. Ration. Mech. Anal. 2011 707 738

[36] L. Preziosi, A. Tosin Math. Model. Nat. Phenom. 2009 1 11

[37] M. Scianna, L. Preziosi Multiscale Model. Simul. 2012 342 382

[38] M. Scianna, L. Preziosi Math. Model. Nat. Phenom. 2012 78 104

[39] M. Scianna, L. Preziosi. Cellular Potts Models: Multiscale Developments and Biological Applications. Chapman and Hall/CRC Press (2013)

[40] J. Smolle Anal. Quant. Cytol. Histol. 1998 7 13

[41] W. G. Stetler-Stevenson, S. Aznavoorian, L. A. Liotta Ann. Rev. Cell Biol. 1993 541 573

[42] M. A. Stolarska, Y. Kim, H. G. Othmer Phil. Trans. R. Soc. A 2009 3525 3553

[43] M. L. Tanaka, W. Debinski, I. K. Puri Cell Prolif. 2009 637 646

[44] A. Tosin, P. Frasca Netw. Heterog. Media 2011 561 596

[45] S. Turner, J. A. Sherratt J. Theor. Biol. 2002 85 100

[46] S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini J. Theor. Biol. 2008 524 543

[47] J. M. Zahm, H. Kaplan, A. Herard, F. Doriot, D. Pierrot, P. Somelette, E. Puchelle Cell. Motil. Cytoskel. 1997 33 43

[48] Y. W. Zhang, G. F. Vande Woude J. Cell. Biochem. 2003 408 417

Cité par Sources :