Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2015_10_6_a10, author = {P. Zwole\'nski}, title = {Trait {Evolution} in two{\textendash}sex {Populations}}, journal = {Mathematical modelling of natural phenomena}, pages = {163--181}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2015}, doi = {10.1051/mmnp/20150611}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20150611/} }
TY - JOUR AU - P. Zwoleński TI - Trait Evolution in two–sex Populations JO - Mathematical modelling of natural phenomena PY - 2015 SP - 163 EP - 181 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20150611/ DO - 10.1051/mmnp/20150611 LA - en ID - MMNP_2015_10_6_a10 ER -
P. Zwoleński. Trait Evolution in two–sex Populations. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 163-181. doi : 10.1051/mmnp/20150611. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20150611/
[1] C. R. Biologies 2004 961 969
,[2] Ann. Prob. 1980 727 744
[3] J. Banasiak, M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkháuser, 2014.
[4] F. Bolley, Separability and completeness for the Wasserstein distance, Séminaire de probabilités XLI, Lecture Notes in Mathematics 1934 (2008), 371–377.
[5] Trends in Ecology and Evolution 2009 280 288
,[6] Applicationes Mathematicae 2000 21 34
,[7] Stoch. Models 2008 2 44
, ,[8] J. Math. Biol. 2013 569 607
, ,[9] J. Math. Soc. Japan 1970 443 455
[10] J. Math. Biol. 1988 1 25
,[11] ESAIM: Proceedings 2009 289 310
,[12] R. A. Fisher, The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1930.
[13] Ann. Appl. Probab. 2004 1880 1919
,[14] Mathematical Biosciences 1971 117 143
[15] Sex Transm. Inf. 2001 7 12
[16] The American Naturalist 1998 706 716
,[17] Biometrics 1953 212 225
[18] J. Math. Biol. 1988 635 649
, ,[19] J. Roy. Statist. Soc. Ser. B. 1949 230 264
[20] N. Keyfotz, The mathematics of sex and marriage, Proc. Sixth. Berkeley Symp. Math. Statist. Probability, Univ. California Press, 1972, 353–367.
[21] Researches on Population Ecology 1978 50 60
[22] Prob. Engin. Mech. 2011 54 60
[23] Nonlinear Anal. Real World Appl. 2011 2396 2407
[24] Arch. Ration. Mech. Anal. 1990 81 93
,[25] Math. Models Methods Appl. Sci. 2001 1393 1409
,[26] J. Math. Anal. Appl. 2002 291 309
[27] Chinese Journal of Ecology 2003 63 65
[28] J. H. Pollard, Mathematical Models for Growth of Human Populations, Cambridge Univ. Press, 1973.
[29] J. Math. Biol 1994 89 109
,[30] S. T. Rachev, Probability metrics and the stability of stochastic models, John Willey and Sons, Chichester 1991.
[31] Mathematical Modelling 1983 27 39
[32] Bull. Polish Acad. Sci. 2006 175 191
,[33] Math. Mod. Nat. Phenomena 2006 83 100
,[34] J. Math. Biol. 2015 1295 1321
,[35] Kinetic and Related Models 2012 873 900
[36] C. Villani, Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften 338, Springer–Verlag, 2008.
[37] J. Biol. Dynam. 2009 252 270
,[38] Proc. Nat. Acad. Sci. USA 1974 2813 2817
,Cité par Sources :