Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 117-141.

Voir la notice de l'article provenant de la source EDP Sciences

A traceless variant of the Johnson-Segalman viscoelastic model is presented and applied to blood flow simulations. The viscoelastic extra stress tensor is decomposed into its traceless (deviatoric) and spherical parts, leading to a reformulation of the classical Johnson-Segalman model. The equivalence of the two models is established comparing model predictions for simple test cases. The new model is validated using several 2D benchmark problems, designed to reproduce difficulties that arise in the simulation of blood flow in blood vessels or medical devices. The structure and behaviour of the new model are discussed and the future use of the new model in envisioned, both on the theoretical and numerical perspectives.
DOI : 10.1051/mmnp/20149609

T. Bodnár 1 ; M. Pires 2, 3 ; J. Janela 4

1 Faculty of Mechanical Engineering, Czech Technical University in Prague Karlovo Náměstí 13, 121 35 Prague 2, Czech Republic
2 Department of Mathematics and CIMA-UE, Évora University Rua Romão Ramalho, 7000-671, Évora, Portugal
3 CEMAT, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
4 Department of Mathematics and CEMAPRE, ISEG, Universidade de Lisboa Rua do Quelhas 6, 1200-781 Lisbon, Portugal
@article{MMNP_2014_9_6_a8,
     author = {T. Bodn\'ar and M. Pires and J. Janela},
     title = {Blood {Flow} {Simulation} {Using} {Traceless} {Variant} of {Johnson-Segalman} {Viscoelastic} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {117--141},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2014},
     doi = {10.1051/mmnp/20149609},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149609/}
}
TY  - JOUR
AU  - T. Bodnár
AU  - M. Pires
AU  - J. Janela
TI  - Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 117
EP  - 141
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149609/
DO  - 10.1051/mmnp/20149609
LA  - en
ID  - MMNP_2014_9_6_a8
ER  - 
%0 Journal Article
%A T. Bodnár
%A M. Pires
%A J. Janela
%T Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model
%J Mathematical modelling of natural phenomena
%D 2014
%P 117-141
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149609/
%R 10.1051/mmnp/20149609
%G en
%F MMNP_2014_9_6_a8
T. Bodnár; M. Pires; J. Janela. Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 117-141. doi : 10.1051/mmnp/20149609. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149609/

[1] M. Anand, K.R. Rajagopal Intern. Journal of Cardiovasc. Medicine and Sci. 2004 59 68

[2] N. Arada, M. Pires, A. Sequeira IASME Transactions 2005 948 959

[3] N. Arada, M. Pires, A. Sequeira.Numerical approximation of a viscoelastic Oldroyd-B flows in curved pipes. In Y. Giga, H. Kozono, H. Okamoto, and Y. Shibata, editors, Kyoto Conference on the Navier-Stokes Equations and their Applications, volume B1 of Kôkyûroku Bessatsu, RIMS, March 2007, 43–70.

[4] N. Arada, M. Pires, A. Sequeira Computers and Mathematics with Applications 2007 625 646

[5] R.B. Bird, R.C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, volume I. Fluid Mechanics. John Willey Sons, second edition, 1987.

[6] R.B. Bird, Ch.F. Curtis, R.C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, volume II. Kinetic Theory. John Willey Sons, second edition, 1987.

[7] T. Bodnár, K.R. Rajagopal, A. Sequeira Mathematical Modelling of Natural Phenomena 2011 1 24

[8] T. Bodnár, A. Sequeira. Numerical study of the significance of the non-Newtonian nature of blood in steady flow through a stenosed vessel. In R. Rannacher and A. Sequeira, editors, Advances in Mathematical Fluid Mechanics, Springer Verlag, (2010), 83–104.

[9] T. Bodnár, A. Sequeira, M. Prosi Applied Mathematics and Computation 2011 5055 5067

[10] J. Chen, X.-Y. Lu. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. Journal of Biomechanics, 2005.

[11] B. Cockburn, G. Karniadakis, C.Shu. Discontinuous Galerkin Methods Theory, Computation and Applications, volume 11 of Lecture Notes in Computer Science and Engineering. Springer Verlag, 2000.

[12] L. Dintenfass. Blood Viscosity, Hyperviscosity Hyperviscoaemia. MTP Press Limited (Kluwer), 1985.

[13] A. Ern, J. Guermond SIAM Journal of Numerical Analysis 2006 753 778

[14] P. Español, X.F. Yuan, R.C. Ball Journal of Non-Newtonian Fluid Mechanics 1996 93 109

[15] M.M. Fyrillasa, G.C. Georgioua, D. Vlassopoulos Journal of Non-Newtonian Fluid Mechanics 1999 105 123

[16] G.P. Galdi, R. Rannacher, A.M. Robertson, S. Turek, editors. Hemodynamical Flows - Modeling, Analysis and Simulation, vol. 37 of Oberwolfach Seminars. Birkäuser, 2008.

[17] A. Gambaruto, J. Janela, A. Moura, A. Sequeira Mathematical biosciences and engineering 2011 409 423

[18] A. Gambaruto, J. Janela, A. Moura, A. Sequeira Mathematical biosciences and engineering 2013 649 665

[19] F.J.H. Gijsen, F.N. Van De Vosse, J.D. Janssen Journal of Biomechanics 1999 601 608

[20] V. Girault, P.A. Raviart.Finite Element Approximation of the Navier Stokes Equations, volume 749 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1979.

[21] F. Hecht. FreeFem++ v 3.23 documentation, June 2013. http://www.freefem.org/ff++.

[22] J. Hron, J. Malek, S. Turek International Journal for Numerical Methods in Fluids 2000 863 879

[23] R.W. Kolkka, D.S. Malkus, M.G. Hansen, G.R. Ierley, R.A. Worthing Journal of Non-Newtonian Fluid Mechanics 1988 303 335

[24] P. Lesaint, P.A. Raviart.On a finite element method for solving the neutron transport equation. In Mathematical aspects of finite elements in partial differential equations, pages 89–123, New York, 1974. Academic Press. (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974).

[25] A. Leuprecht, K. Perktold Computer Methods in Biomechanics and Biomechanical Engineering 2001 149 163

[26] B.Q. Li. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer Verlag, 2006.

[27] R.G. Owens Journal of Non-Newtonian Fluid Mechanics 2006 57 70

[28] K. Perktold, M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, M. H. Friedman Journal of Biomechanics 1998 217 228

[29] K. Perktold, G. Rappitsch Journal of Biomechanics 1995 845 856

[30] C. Picart, J.-M. Piau, H. Galliard, P. Carpentier Journal of Rheology 1998

[31] M. Pires, A. Sequeira Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications 2011 21 43

[32] I.J. Rao, K.R. Rajagopal Acta Mechanica 1999 209 219

[33] K.D. Smith, A. Sequeira Applicable Analysis 2011 227 252

[34] G.B. Thurston Biophysical Journal 1972 1205 1217

[35] G.B. Thurston Biorheology 1973 375 381

[36] G.B. Thurston Biorheology 1979 149 162

[37] G.B. Thurston, N.M. Henderson Effects of flow geometry on blood viscoelasticity 2006 729 746

[38] K.K. Yeleswarapu, M.V. Kameneva, K.R. Rajagopal, J.F. Antaki Mechanics Research Communications 1998 257 262

[39] F. Yilmaz, M.Y. Gundogdu Korea-Australia Rheology Journal 2008 197 211

Cité par Sources :