Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 98-116.

Voir la notice de l'article provenant de la source EDP Sciences

We present a fully automatic approach to recover boundary conditions and locations of the vessel wall, given a crude initial guess and some velocity cross-sections, which can be corrupted by noise. This paper contributes to the body of work regarding patient-specific numerical simulations of blood flow, where the computational domain and boundary conditions have an implicit uncertainty and error, that derives from acquiring and processing clinical data in the form of medical images. The tools described in this paper fit well in the current approach of performing patient-specific simulations, where a reasonable segmentation of the medical images is used to form the computational domain, and boundary conditions are obtained as velocity cross-sections from phase-contrast magnetic resonance imaging. The only additional requirement in the proposed methods is to obtain additional velocity cross-section measurements throughout the domain. The tools developed around optimal control theory, would then minimize a user defined cost function to fit the observations, while solving the incompressible Navier-Stokes equations. Examples include two-dimensional idealized geometries and an anatomically realistic saccular geometry description.
DOI : 10.1051/mmnp/20149608

J. Tiago 1 ; A. Gambaruto 2 ; A. Sequeira 1

1 Departamento de Matemática and CEMAT/IST Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
2 Computer Applications in Science & Engineering (CASE), Barcelona Supercomputing Center Nexus I - Campus Nord UPC, C/ Jordi Girona 2, 3a. Planta, 08034 Barcelona, Spain
@article{MMNP_2014_9_6_a7,
     author = {J. Tiago and A. Gambaruto and A. Sequeira},
     title = {Patient-specific {Blood} {Flow} {Simulations:} {Setting} {Dirichlet} {Boundary} {Conditions} for {Minimal} {Error} with {Respect} to {Measured} {Data}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {98--116},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2014},
     doi = {10.1051/mmnp/20149608},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149608/}
}
TY  - JOUR
AU  - J. Tiago
AU  - A. Gambaruto
AU  - A. Sequeira
TI  - Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 98
EP  - 116
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149608/
DO  - 10.1051/mmnp/20149608
LA  - en
ID  - MMNP_2014_9_6_a7
ER  - 
%0 Journal Article
%A J. Tiago
%A A. Gambaruto
%A A. Sequeira
%T Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data
%J Mathematical modelling of natural phenomena
%D 2014
%P 98-116
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149608/
%R 10.1051/mmnp/20149608
%G en
%F MMNP_2014_9_6_a7
J. Tiago; A. Gambaruto; A. Sequeira. Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 98-116. doi : 10.1051/mmnp/20149608. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149608/

[1] F.E. Boas, D. Fleischmann Imaging in Medicine 2012 229 240

[2] T. Bodnar, A. Sequeira, M. Prosi Applied Mathematics and Computation, Elsevier 2011 5055 5067

[3] J. Burkardt, M. Gunzburger, J. Peterson International Journal of Computational Fluid Dynamics 2002 171 185

[4] J.R. Cebral, M.A. Castro, S. Appanaboyina, C.M. Putman, D. Millan, A.F. Frangi IEEE Transactions on Medical Imaging 2005 457 467

[5] COMSOL Multiphysics, Users Guide, COMSOL 4.3, 2012.

[6] Optimization Module, Users Guide, COMSOL 4.3, 2012.

[7] M. D’ Elia, M. Perego, A. Veneziani. A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics. Journal of Scientific Computing, 53 (2011).

[8] M. D’ Elia, A. Veneziani. A Data Assimilation technique for including noisy measurements of the velocity field into Navier-Stokes simulations. Proceedings of V European Conference on Computational Fluid Dynamics, ECCOMAS, June (2010).

[9] J.C. De Los Reyes, K. Kunisch Nonlinear Anal. 2005 1289 1316

[10] J.C. De Los Reyes, K. Kunisch Control Cybernet. 2009 1217 1249

[11] J.C. De Los Reyes J-Math. Anal. Appl. 2009 257 279

[12] P. Deuflhard Numer. Math. 1974 289 315

[13] L. Formaggia, J.F. Gerbeau, F. Nobile, A. Quarteroni SIAM J. Numer. Anal. 2002 376 401

[14] A.M. Gambaruto, D.J. Doorly, T. Yamaguchi Journal of Computational Physics 2010 5339 5356

[15] A. Garambuto, J. Janela, A. Moura, A. Sequeira Mathematical Biosciences and Engineering 2011 409 423

[16] A. Gambaruto, J. Janela, A. Moura, A. Sequeira Mathematical Biosciences and Engineering 2013 649 665

[17] A.M. Gambaruto, J. Peiro, D.J. Doorly, A.G. Radaelli International Journal for Numerical Methods in Fluids 2008 495 517

[18] V. Girault, P.A. Raviart. Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Number 5 in Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.

[19] T. Guerra, J. Tiago, A. Sequeira. Optimal control in blood flow simulations. International Journal of Non-Linear Mechanics, Available online (2014), doi:10.1016/j.ijnonlinmec.2014.04.005.

[20] M. Gunzburger Flow, Turbulence and Combustion 2000 249 272

[21] M. Gunzburger, L.S. Hou, T.P. Svobodny RAIRO - Modélisation mathémathique et analyse numérique 1991 711 748

[22] P. Gill, W. Murray, M.A. Saunders Society for Industrial and Applied Mathematics, SIAM REVIEW 2005 99 131

[23] B.M. Johnston, P.R. Johnston , S. Corney, D. Kilpatrick Journal of Biomechanics 2006 1116 1128

[24] M. Kroon, G.A. Holzapfel Proc. R. Soc. A 2008 807 825

[25] K.L. Lee, D.J. Doorly, D.N. Firmin Medical Physics 2006 2621 2631

[26] J.G. Myers, J.A. Moore, M. Ojha, K.W. Johnston, C.R. Ethier Annals of Biomedical Engineering 2001 109 120

[27] R.W. Ogden, G. Saccomandi, I. Sgura Computational Mechanics 2004 484 502

[28] E. Pusey, R.B. Lufkin, R.K. Brown, M.A. Solomon, D.D. Stark, R.W. Tarr, W.N. Hanafee Radiographics 1986 891 911

[29] A. Quarteroni, L. Formaggia. Mathematical Modelling and Numerical Simulation of the Cardiovascular System, Modelling of living Systems. Handbook of Numerical Analysis Series. Elsevier, Amsterdam, 2002.

[30] S. Ramalho, A. Moura, A.M. Gambaruto, A. Sequeira International Journal for Numerical Methods in Biomedical Engineering 2012 697 713

[31] A.M. Robertson, A. Sequeira, M.V. Kameneva Hemodynamical Flows. Modeling, Analysis and Simulation. Oberwolfach Seminars. Birkhauser Verlag, Basel 2008 63 120

[32] O. Schenk, K. Gärtner, W. Fichtner, A. Stricker Journal of Future Generation Computers Systems 2001 69 78

[33] T. Silva, A. Sequeira, R. Santos, J. Tiago. Mathematical Modeling of Atherosclerotic Plaque Formation Coupled with a Non-Newtonian Model of Blood Flow. Conference Papers in Mathematics, vol. 2013, Article ID 405914, 2013. doi:10.1155/2013/405914.

[34] N.P. Smith, A.J. Pullan, P.J. Hunter An anatomically based model of coronary blood flow and myocardial mechanics SIAM J. Appl. Math. 2002 990 1018

[35] P. Tricerri. Mathematical and Numerical Modeling of Healthy and Unhealthy Cerebral Arterial Tissue. École Polytechnique Fédérale de Lausanne. Ph.D. thesis, 2014.

[36] Y. Wei, S. Cotin, J. Dequidt, C. Duriez, J. Allard, E. Kerrien. A (Near) Real-Time Simulation Method of Aneurysm Coil Embolization http://dx.doi.org/10.5772/48635, INTECH, 2012.

[37] C. Westbrook, C.K. Roth, J. Talbot. MRI in Practice. Wiley-Blackwell, 2011.

Cité par Sources :