Numerical Modelling of Cell Distribution in Blood Flow
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 69-84.

Voir la notice de l'article provenant de la source EDP Sciences

Properties of blood cells and their interaction determine their distribution in flow. It is observed experimentally that erythrocytes migrate to the flow axis, platelets to the vessel wall, and leucocytes roll along the vessel wall. In this work, a three-dimensional model based on Dissipative Particle Dynamics method and a new hybrid (discrete-continuous) model for blood cells is used to study the interaction of erythrocytes with platelets and leucocytes in flow. Erythrocytes are modelled as elastic highly deformable membranes, while platelets and leucocytes as elastic membranes with their shape close to a sphere. Separation of erythrocytes and platelets in flow is shown for different values of hematocrit. Erythrocyte and platelet distributions are in a good qualitative agreement with the existing experimental results. Migration of leucocyte to the vessel wall and its rolling along the wall is observed.
DOI : 10.1051/mmnp/20149606

N. Bessonov 1 ; E. Babushkina 1 ; S. F. Golovashchenko 2 ; A. Tosenberger 3, 4 ; F. Ataullakhanov 5, 6, 7, 8 ; M. Panteleev 5, 6, 7, 8 ; A. Tokarev 5, 6 ; V. Volpert 3, 4, 9, 10

1 Institute of Problems of Mechanical Engineering, Russian Academy of Sciences 199178 Saint Petersburg, Russia
2 Manufacturing Research Department, Ford Research Laboratory, 481214 Dearborn, USA
3 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
4 INRIA Team Dracula, INRIA Antenne Lyon la Doua, 69603 Villeurbanne, France
5 National Research Center for Haematology, Ministry of Healthcare of Russian Federation, 125167 Moscow, Russia
6 Federal Research and Clinical Centre of Paediatric Haematology, Oncology and Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
7 Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
8 Center for Theoretical Problems of Physicochemical Pharmacology Russian Academy of Sciences, 119991 Moscow, Russia
9 European Institute of Systems Biology and Medicine, 69007 Lyon, France
10 Department of Mahematics, Mechanics and Computer Science Southern Federal University, Rostov-on-Don, Russia
@article{MMNP_2014_9_6_a5,
     author = {N. Bessonov and E. Babushkina and S. F. Golovashchenko and A. Tosenberger and F. Ataullakhanov and M. Panteleev and A. Tokarev and V. Volpert},
     title = {Numerical {Modelling} of {Cell} {Distribution} in {Blood} {Flow}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {69--84},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2014},
     doi = {10.1051/mmnp/20149606},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149606/}
}
TY  - JOUR
AU  - N. Bessonov
AU  - E. Babushkina
AU  - S. F. Golovashchenko
AU  - A. Tosenberger
AU  - F. Ataullakhanov
AU  - M. Panteleev
AU  - A. Tokarev
AU  - V. Volpert
TI  - Numerical Modelling of Cell Distribution in Blood Flow
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 69
EP  - 84
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149606/
DO  - 10.1051/mmnp/20149606
LA  - en
ID  - MMNP_2014_9_6_a5
ER  - 
%0 Journal Article
%A N. Bessonov
%A E. Babushkina
%A S. F. Golovashchenko
%A A. Tosenberger
%A F. Ataullakhanov
%A M. Panteleev
%A A. Tokarev
%A V. Volpert
%T Numerical Modelling of Cell Distribution in Blood Flow
%J Mathematical modelling of natural phenomena
%D 2014
%P 69-84
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149606/
%R 10.1051/mmnp/20149606
%G en
%F MMNP_2014_9_6_a5
N. Bessonov; E. Babushkina; S. F. Golovashchenko; A. Tosenberger; F. Ataullakhanov; M. Panteleev; A. Tokarev; V. Volpert. Numerical Modelling of Cell Distribution in Blood Flow. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 69-84. doi : 10.1051/mmnp/20149606. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149606/

[1] D. Alizadehrad, Y. Imai, K. Nakaaki, T. Ishikawa, T. Yamaguchi Journal of Biomechanical Science and Engineering 2012 57 71

[2] M.P. Allen, D.J. Tidesley. Computer Simulation of Liquids. Clarendon, Oxford, 1987.

[3] T. Almomani, H.S. Udaykumar, J.S. Marshall, K.B. Chandran Annals of Biomedical Engineering 2008 905 920

[4] N. M. Bessonov, S.F. Golovashchenko, V.A. Volpert Math. Model. Nat. Phenom. 2009 44 87

[5] T. Bodnar, K. Rajagopal, A. Sequeira Mathematical Modelling of Natural Phenomena 2011 1 24

[6] C. Bui, V. Lleras, O. Pantz ESAIM: Proc. 2009 182 194

[7] L.M. Crowl, A.L. Fogelson Int j numer method biomed eng. 2010 471 487

[8] M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Physical Review E 75, 066707, 2007.

[9] W. Dzwinel, K. Boryczko, D.A. Yuen. Modeling Mesoscopic Fluids with Discrete-Particles Methods. Algorithms and Results., In: Spasic AM, Hsu JP (eds) Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering. Taylor Francis, CRC Press, 715-778.

[10] D. Fedosov, B. Caswell, G.E. Karniadakis. General coarse-grained red blood cell models: I. Mechanics. (2009), arXiv:0905.0042 [q-bio.CB].

[11] D. Fedosov, B. Caswell, G.E. Karniadakis Biophysical Journal 2010 2215 2225

[12] D.A. Fedosov. Multiscale Modeling of Blood Flow and Soft Matter. PhD dissertation at Brown University, (2010).

[13] D.A. Fedosov, H. Lei, B. Caswell, S. Suresh, G.E. Karniadakis PLoS Computational Biology 2011 e1002270

[14] D.A. Fedosov, I.V. Pivkin, G.E. Karniadakis J. Comp. Phys. 2008 2540 2559

[15] H.L. Goldsmith, V.T. Turitto Thrombosis and Haemostasis 1986 415 435

[16] R.D. Groot, P.B. Warren J. Chem. Phys. 1997 4423 4435

[17] S.M. Hosseini, J.J. Feng Chem. Eng. Sci. 2009 4488 4497

[18] Y. Imai, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi Journal of Biomechanics 2010 1386 1393

[19] Y. Imai, K. Nakaaki, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi Journal of Biomechanics 2011 1553 1558

[20] M. Karttunen, I. Vattulainen, A. Lukkarinen. A novel methods in soft matter simulations. Springer, Berlin, 2004.

[21] J.F. Koleski, E.C. Eckstein Trans. Ann. Soc. Intern. Organs 1991 9 12

[22] P.W. Kuchel, E.D. Fackerell Bulletin of Mathematical Biology 1999 209 220

[23] M. B. Lawrence, T. A. Springer Cell 1991 859 873

[24] R.C. Leif, J. Vinograd Proc Natl Acad Sci U S A. 1964 520 528

[25] S. Leibler, A.C. Maggs Proc. Natl. Acad. Sci. USA 1990 6433 6435

[26] L. Lopez, I.M. Duck, W.A. Hunt Biophys J. 1968 1228 1235

[27] J.L. Mcwhirter, H. Noguchi, G. Gompper PNAS 2009 6039 6043

[28] N. Mohandas, P.G. Gallagher Blood 2008 3939 48

[29] L.L. Munn, M.M. Dupin Annals of Biomedical Engineering 2008 534 544

[30] S. Muñoz San Martín, J.L. Sebastián, M. Sancho1, G. Álvarez. Modeling Human Erythrocyte Shape and Size Abnormalities, arXiv:q-bio/0507024 [q-bio.QM], 14 Jul 2005.

[31] H. Noguchi, G. Gompper PNAS 2005 14159 14164

[32] D. Obrist, B. Weber, A. Buck, P. Jenny. Red blood cell distribution in simplified capillary networks. Phil. Trans. R. Soc. A 2010 368, doi: 10.1098/rsta.2010.0045, 2010.

[33] D. Pinho, A. Pereira, R. Lima, T. Ishikawa, Y. Imai, T. Yamaguchi. Red blood cell dispersion in 100 μm glass capillaries: the temperature effect. C.T. Lim and J.C.H. Goh (Eds.), WCB 2010, IFMBE Proceedings, 31 (2010), 1067–1070.

[34] E. Pinto, B. Taboada, R. Rodrigues, V. Faustino, A. Pereira, R. Lima. Cell-free layer (CFL) analysis in a polydimethysiloxane (PDMS) microchannel: a global approach. WebmedCentral Biomedical Engineering, 4 (2013), no.8, WMC004374.

[35] I.V. Pivkin, G.E. Karniadakis. Accurate Coarse-Grained Modeling of Red Blood Cells. Physical review letters, PRL 101 (2008) 118105.

[36] C. Pozrikidis. Modeling and Simulation of Capsules and Biological Cells. by Chapman Hall/CRC, ISBN (2003) 1-58488-359-6.

[37] U.D. Schiller. Dissipative Particle Dynamics. A Study of the Methodological Background. Diploma thesis at Faculty of Physics University of Bielefeld, 2005.

[38] A.A. Tokarev, A.A. Butylin, E.A. Ermakova, E.E. Shnol, G.P. Panasenko, F.I. Ataullakhanov Biophysical Journal 2011 1835 1843

[39] A. Tosenberger, V. Salnikov, N. Bessonov, E. Babushkina, V. Volpert Math. Model. Nat. Phenom. 2011 320 332

[40] K. Tsubota, S. Wada International Journal of Mechanical Sciences 2010 356 364

[41] K. Tsubota, S. Wada, H. Kamada, Y. Kitagawa, R. Lima, T. Yamaguchi Journal of the Earth Simulator 2006 2 7

[42] C. Yeh, A.C. Calvez, E.C. Eckstein Biophysical journal 1994 1252 1259

[43] C. Yeh, E.C. Eckstein Biophysical journal 1994 1706 1716

[44] J. Zhang, P.C. Johnson, A.S. Popel Microvasc Res. 2009 265 272

[45] P. Bagchi Biophysical Journal 2007 1858 1877

[46] R. Skalak, A. Tozeren, R. Zarda, S. Chein Biophysical Journal 1973 245 264

[47] A.A. Tokarev, A.A. Butylin, F.I. Ataullakhanov Biophys. J. 2011 799 808

[48] A.A. Tokarev, A.A. Butylin, F.I. Ataullakhanov Computer Research and Modeling 2012 185 200

[49] S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, T. Seufferlein Acta Biomaterialia 2005 15 30

Cité par Sources :