Voir la notice de l'article provenant de la source EDP Sciences
S. Boujena 1 ; O. Kafi 1 ; N. El Khatib 2
@article{MMNP_2014_9_6_a4, author = {S. Boujena and O. Kafi and N. El Khatib}, title = {A {2D} {Mathematical} {Model} of {Blood} {Flow} and its {Interactions} in an {Atherosclerotic} {Artery}}, journal = {Mathematical modelling of natural phenomena}, pages = {46--68}, publisher = {mathdoc}, volume = {9}, number = {6}, year = {2014}, doi = {10.1051/mmnp/20149605}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149605/} }
TY - JOUR AU - S. Boujena AU - O. Kafi AU - N. El Khatib TI - A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery JO - Mathematical modelling of natural phenomena PY - 2014 SP - 46 EP - 68 VL - 9 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149605/ DO - 10.1051/mmnp/20149605 LA - en ID - MMNP_2014_9_6_a4 ER -
%0 Journal Article %A S. Boujena %A O. Kafi %A N. El Khatib %T A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery %J Mathematical modelling of natural phenomena %D 2014 %P 46-68 %V 9 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149605/ %R 10.1051/mmnp/20149605 %G en %F MMNP_2014_9_6_a4
S. Boujena; O. Kafi; N. El Khatib. A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 46-68. doi : 10.1051/mmnp/20149605. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149605/
[1] Mathematical Biosciences and Engineering 2011 409 423
, , ,[2] A. Quarteroni, L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system. P.G. Ciarlet (ED.),Handbook of numerical analysis, vol XII, North-Holland, Amsterdam, (2004), 3–127.
[3] App. Math. and Opt 1977 263 282
[4] J. Phys. 1996 529 542
, ,[5] F. Nobile. Numerical approximation of fluid-structure interaction problems with application to haemodynamics. EPFL. PhD thesis, Lausanne, 2001.
[6] Journal of Elasticity 2000 1 48
, ,[7] Journal of Computational and Applied Mathematics 2010 2783 2791
, ,[8]
[9] L. Ait Moudid. Couplage fluide-structure pour la simulation numérique des écoulements fluides dans une conduite à parois rigides ou élastiques, en présence d’obstacles ou non. Université d’Artois. PhD thesis, Compiègne, 2007.
[10] Journal of Biomechanics 2007 3715 3724
, , , ,[11] N. El Khatib. Modélisation mathématique de l’athérosclérose. Université Claude Bernard – Lyon 1. PhD thesis, Lyon, 2009.
[12] P.A. Raviart, J.M. Thomas. Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris, 1993.
[13] Computers and Fluids. Elsevier 2011 46 57
, , , , ,[14] R. Aboulaich, S. Boujena, E. El Guarmah. A non linear diffusion model with non homogeneous boundary conditions in image restoration. Esc10 Milan, (2009), 22–26.
[15] S. Boujena. Étude d’une classe de fluides non-Newtoniens, les fluides Newtoniens généralisés. Thèse de troisième cycle. Univ. Pierre et Marrie-Currie, Paris 6, 1986.
[16] Hellenic J Cardiol 2005 9 15
,[17] Y.C. Fung. Biomechanics: Mechanical properties of living tissues. Springer-Verlag, New York, 1993.
[18] Stroke 2006 1195 1196
, , ,Cité par Sources :