A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 46-68.

Voir la notice de l'article provenant de la source EDP Sciences

A stenosis is the narrowing of the artery, this narrowing is usually the result of the formation of an atheromatous plaque infiltrating gradually the artery wall, forming a bump in the ductus arteriosus. This arterial lesion falls within the general context of atherosclerotic arterial disease that can affect the carotid arteries, but also the arteries of the heart (coronary), arteries of the legs (PAD), the renal arteries... It can cause a stroke (hemiplegia, transient paralysis of a limb, speech disorder, sailing before the eye). In this paper we study the blood-plaque and blood-wall interactions using a fluid-structure interaction model. We first propose a 2D analytical study of the generalized Navier-Stokes equations to prove the existence of a weak solution for incompressible non-Newtonian fluids with non standard boundary conditions. Then, coupled, based on the results of the theoretical study approach is given. And to form a realistic model, with high accuracy, additional conditions due to fluid-structure coupling are proposed on the border undergoing inetraction. This coupled model includes (a) a fluid model, where blood is modeled as an incompressible non-Newtonian viscous fluid, (b) a solid model, where the arterial wall and atherosclerotic plaque will be treated as non linear hyperelastic solids, and (c) a fluid-structure interaction (FSI) model where interactions between the fluid (blood) and structures (the arterial wall and atheromatous plaque) are conducted by an Arbitrary Lagrangian Eulerian (ALE) method that allows accurate fluid-structure coupling.
DOI : 10.1051/mmnp/20149605

S. Boujena 1 ; O. Kafi 1 ; N. El Khatib 2

1 Université Hassan II-Casablanca, Faculté des Sciences -Ain Chock-, B.P 5366. Maarif. Casablanca
2 Department of Computer Science and Mathematics, Lebanese American University - Byblos campus P.O. Box: 36, Byblos, Lebanon
@article{MMNP_2014_9_6_a4,
     author = {S. Boujena and O. Kafi and N. El Khatib},
     title = {A {2D} {Mathematical} {Model} of {Blood} {Flow} and its {Interactions} in an {Atherosclerotic} {Artery}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {46--68},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2014},
     doi = {10.1051/mmnp/20149605},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149605/}
}
TY  - JOUR
AU  - S. Boujena
AU  - O. Kafi
AU  - N. El Khatib
TI  - A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 46
EP  - 68
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149605/
DO  - 10.1051/mmnp/20149605
LA  - en
ID  - MMNP_2014_9_6_a4
ER  - 
%0 Journal Article
%A S. Boujena
%A O. Kafi
%A N. El Khatib
%T A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery
%J Mathematical modelling of natural phenomena
%D 2014
%P 46-68
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149605/
%R 10.1051/mmnp/20149605
%G en
%F MMNP_2014_9_6_a4
S. Boujena; O. Kafi; N. El Khatib. A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 46-68. doi : 10.1051/mmnp/20149605. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149605/

[1] A.M. Gambaruto, J. Janela, A. Moura, A. Sequeira Mathematical Biosciences and Engineering 2011 409 423

[2] A. Quarteroni, L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system. P.G. Ciarlet (ED.),Handbook of numerical analysis, vol XII, North-Holland, Amsterdam, (2004), 3–127.

[3] D. Cioranescu App. Math. and Opt 1977 263 282

[4] F. Hecht, G. Martin-Borret, M. Thiriet J. Phys. 1996 529 542

[5] F. Nobile. Numerical approximation of fluid-structure interaction problems with application to haemodynamics. EPFL. PhD thesis, Lausanne, 2001.

[6] G. Holzapfel, T. Gasser, R. Ogden Journal of Elasticity 2000 1 48

[7] J. Janela, A. Moura, A. Sequeira Journal of Computational and Applied Mathematics 2010 2783 2791

[8]

[9] L. Ait Moudid. Couplage fluide-structure pour la simulation numérique des écoulements fluides dans une conduite à parois rigides ou élastiques, en présence d’obstacles ou non. Université d’Artois. PhD thesis, Compiègne, 2007.

[10] M.X. Li, J.J. Beech-Brandt, L.R. John, P.R. Hoskins, W.J. Easson Journal of Biomechanics 2007 3715 3724

[11] N. El Khatib. Modélisation mathématique de l’athérosclérose. Université Claude Bernard – Lyon 1. PhD thesis, Lyon, 2009.

[12] P.A. Raviart, J.M. Thomas. Introduction à l’analyse numérique des équations aux dérivées partielles. Masson, Paris, 1993.

[13] P. Crosetto, P. Raymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, A. Quarteroni Computers and Fluids. Elsevier 2011 46 57

[14] R. Aboulaich, S. Boujena, E. El Guarmah. A non linear diffusion model with non homogeneous boundary conditions in image restoration. Esc10 Milan, (2009), 22–26.

[15] S. Boujena. Étude d’une classe de fluides non-Newtoniens, les fluides Newtoniens généralisés. Thèse de troisième cycle. Univ. Pierre et Marrie-Currie, Paris 6, 1986.

[16] T.G. Papaioannou, Christodoulos Stefanadis Hellenic J Cardiol 2005 9 15

[17] Y.C. Fung. Biomechanics: Mechanical properties of living tissues. Springer-Verlag, New York, 1993.

[18] Z.Y. Li, Simon P.S. Howarth, Tjun Tang, Jonathan H. Gillard Stroke 2006 1195 1196

Cité par Sources :