Blood Coagulation Simulations using a Viscoelastic Model
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 34-45.

Voir la notice de l'article provenant de la source EDP Sciences

This paper presents numerical results based on a macroscopic blood coagulation model coupled with a non-linear viscoelastic model for blood flow. The system of governing equations is solved using a central finite-volume scheme for space discretization and an explicit Runge-Kutta time-integration. An artificial compressibility method is used to resolve pressure and a non-linear TVD filter is applied for stabilization. A simple test case of flowing blood over a clotting surface in a straight 3D vessel is solved. This work presents a significant extension of the previous studies [10] and [9].
DOI : 10.1051/mmnp/20149604

A. Sequeira 1 ; T. Bodnár 2

1 Department of Mathematics and CEMAT/IST, Instituto Superior Técnico, University of Lisbon Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
2 Faculty of Mechanical Engineering, Czech Technical University in Prague Karlovo Náměstí 13, 121 35 Prague 2, Czech Republic
@article{MMNP_2014_9_6_a3,
     author = {A. Sequeira and T. Bodn\'ar},
     title = {Blood {Coagulation} {Simulations} using a {Viscoelastic} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {34--45},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2014},
     doi = {10.1051/mmnp/20149604},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149604/}
}
TY  - JOUR
AU  - A. Sequeira
AU  - T. Bodnár
TI  - Blood Coagulation Simulations using a Viscoelastic Model
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 34
EP  - 45
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149604/
DO  - 10.1051/mmnp/20149604
LA  - en
ID  - MMNP_2014_9_6_a3
ER  - 
%0 Journal Article
%A A. Sequeira
%A T. Bodnár
%T Blood Coagulation Simulations using a Viscoelastic Model
%J Mathematical modelling of natural phenomena
%D 2014
%P 34-45
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149604/
%R 10.1051/mmnp/20149604
%G en
%F MMNP_2014_9_6_a3
A. Sequeira; T. Bodnár. Blood Coagulation Simulations using a Viscoelastic Model. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 34-45. doi : 10.1051/mmnp/20149604. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149604/

[1] M. Anand, K. Rajagopal, K.R. Rajagopal J. of Theoretical Medicine 2003 183 218

[2] M. Anand, K. Rajagopal, K.R. Rajagopal Pathophysiology Haemostasis Thrombosis 2005 109 120

[3] M. Anand, K. Rajagopal, K.R. Rajagopal J. of Theoretical Biology 2008 725 738

[4] M. Anand, K.R. Rajagopal Int. J. of Cardiovascular Medicine and Science 2004 59 68

[5] M. Anand, K.R. Rajagopal C. R. Méchanique 2002 557 562

[6] F.I. Ataullakhanov, V.I. Zarnitsina, A.V. Pokhilko, A.I. Lobanov, O.L. Morozova International Journal of Bifurcation and Chaos 2002 1985 2002

[7] T. Bodnár. On the use of non-linear TVD filters in finite-volume simulations. In: Algoritmy 2012, Proceedings of Contributed Papers and Posters, Slovak University of Technology, Faculty of Civil Engineering, Bratislava (2012), 190–199.

[8] T. Bodnár, J. Příhoda Journal of Flow, Turbulence and Combustion 2006 429 442

[9] T. Bodnár, K.R. Rajagopal, A. Sequeira Mathematical Modelling of Natural Phenomena 2011 1 24

[10] T. Bodnár, A. Sequeira Computational and Mathematical Methods in Medicine 2008 83 104

[11] T. Bodnár, A. Sequeira. Numerical Study of the Significance of the Non-Newtonian Nature of Blood in Steady Flow Through a Stenosed Vessel. In: Advances in Mathematical Fluid Mechanics. (edited by R. Rannacher A. Sequeira), 83–104, Springer Verlag (2010).

[12] T. Bodnár, A. Sequeira, L. Pirkl. Numerical Simulations of Blood Flow in a Stenosed Vessel under Different Flow Rates using a Generalized Oldroyd - B Model. In: Numerical Analysis and Applied Mathematics, Vols 1 and 2. Melville, New York: American Institute of Physics, vol. 2 (2009), 645–648.

[13] T. Bodnár, A. Sequeira, M. Prosi Applied Mathematics and Computation 2011 5055 5067

[14] S. Butenas, K. G. Mann Biochemistry (Moscow) 2002 3 12

[15] B. Engquist, P. Lötstedt, B. Sjögreen Mathematics of Computation 1989 509 537

[16] A. Fasano, R.F. Santos, A. Sequeira. Blood coagulation: a puzzle for biologists, a maze for mathematicians. In D. Ambrosi, A. Quarteroni, and G. Rozza (Eds.) Modeling of Physiological Flows. vol. 5, Modeling, Simulation Applications, ch. 3 (2012) 41–75, Springer.

[17] G.P. Galdi, R. Rannacher, A. M. Robertson, S. Turek (Eds.) Hemodynamical Flows: Modeling, Analysis and Simulations. (Oberwolfach Seminars), (2008) Birkhäuser Verlag.

[18] A.M. Gambaruto, J. Janela, A. Moura, A. Sequeira Mathematical Biosciences and Engineering 2011 409 423

[19] A. Jameson. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In AIAA 10th Computational Fluid Dynamics Conference, Honolulu (1991). AIAA Paper 91–1596.

[20] A. Jameson, W. Schmidt, E. Turkel. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping scheme. In: AIAA 14th Fluid and Plasma Dynamics Conference, Palo Alto (1981), AIAA paper 81–1259.

[21] J. Janela, A. Moura, A. Sequeira International Journal of Engineering Science 2010 1332 1349

[22] R. Keslerová. Numerical study of effect of stress tensor for viscous and viscoelastic fluids flow. In: A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban J. Levesley, and M.V. Tretyakov (Eds.) Numerical Mathematics and Advanced Applications (2013), 529– 538. Springer. Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011.

[23] R. Keslerová, K. Kozel Applied Mathematics and Computation 2011 5125 5133

[24] A.L. Kuharsky, A.L. Fogelson Biophysical Journal 2001 1050 1074

[25] K.G. Mann, K. Brummel-Ziedins, T. Orfeo, S. Butenas Blood Cells, Molecules, and Diseases 2006 108 117

[26] L. Pirkl, T. Bodnár, K. Tuma. Viscoelastic fluid flows at moderate Weissenberg numbers using Oldroyd type model. In: AIP Conference Proceedings, vol. 1389 (2011), 102–105, American Institute of Physics.

[27] K.R. Rajagopal, A.R. Srinivasa Journal of Non-Newtonian Fluid Mechanics 2000 207 227

[28] P. Riha, X. Wang, R. Liao, J.F. Stoltz Clinical Hemorheology and Microcirculation 1999 45 49

[29] A.M. Robertson, A. Sequeira, M. Kameneva. Hemorheology. In: Hemodynamical Flows: Modelling, Analysis and Simulation, vol 37, (2008), 63–120, Birkhäuser .

[30] A.M. Robertson, A. Sequeira, R.G. Owens. Rheological models for blood. In:Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System (MS) (2009), 211–241, Springer-Verlag .

[31] A. Sequeira, R.F. Santos, T. Bodnár Mathematical Biosciences and Engineering 2011 425 443

[32] W. Shyy, M.-H. Chen, R. Mittal, H.S. Udaykumar Journal of Computational Physics 1992 49 62

[33] V.I. Zarnitsina, A.V. Pokhilko, F. I. Ataullakhanov Thrombosis Research 1996 225 236

Cité par Sources :