Importance of VIIIa Inactivation in a Mathematical Model for the Formation, Growth, and Lysis of Clots
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 17-33.

Voir la notice de l'article provenant de la source EDP Sciences

We perform a sensitivity analysis for a thus far unstudied mathematical model for the formation, growth and lysis of clots in vitro. The sensitivity analysis procedure uses an ensemble standard deviation for species concentrations, and is equivalent to a variance decomposition procedure also available in the literature. Our analysis shows that fibrin production is most sensitive to the rate constant governing activation of prothrombin to thrombin. Further, the time-averaged sum of all species’ concentrations is most sensitive to the rate constants governing the inactivation of VIIIa (intrinsic as well as by APC). We therefore conclude that the rate constants for VIIIa inactivation affect the model the greatest: this conclusion must be experimentally verified to determine if such is indeed the case for hemostasis.
DOI : 10.1051/mmnp/20149603

P. P. Naidu 1 ; M. Anand 1

1 Department of Chemical Engineering, Indian Institute of Technology Hyderabad Yeddumailaram, Andhra Pradesh - 502205, India
@article{MMNP_2014_9_6_a2,
     author = {P. P. Naidu and M. Anand},
     title = {Importance of {VIIIa} {Inactivation} in a {Mathematical} {Model} for the {Formation,} {Growth,} and {Lysis} of {Clots}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {17--33},
     publisher = {mathdoc},
     volume = {9},
     number = {6},
     year = {2014},
     doi = {10.1051/mmnp/20149603},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149603/}
}
TY  - JOUR
AU  - P. P. Naidu
AU  - M. Anand
TI  - Importance of VIIIa Inactivation in a Mathematical Model for the Formation, Growth, and Lysis of Clots
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 17
EP  - 33
VL  - 9
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149603/
DO  - 10.1051/mmnp/20149603
LA  - en
ID  - MMNP_2014_9_6_a2
ER  - 
%0 Journal Article
%A P. P. Naidu
%A M. Anand
%T Importance of VIIIa Inactivation in a Mathematical Model for the Formation, Growth, and Lysis of Clots
%J Mathematical modelling of natural phenomena
%D 2014
%P 17-33
%V 9
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149603/
%R 10.1051/mmnp/20149603
%G en
%F MMNP_2014_9_6_a2
P. P. Naidu; M. Anand. Importance of VIIIa Inactivation in a Mathematical Model for the Formation, Growth, and Lysis of Clots. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 6, pp. 17-33. doi : 10.1051/mmnp/20149603. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149603/

[1] M. Anand, K. Rajagopal, K.R. Rajagopal J. Theor. Med. 2003 183 218

[2] M. Anand, K. Rajagopal, K.R. Rajagopal J. Theor. Biol. 2008 725 738

[3] F.I. Ataullakhanov, V.I. Zarnitsina, A.V. Pokhilko, A.I. Lobanov, O.L. Morozova A theoretical approach, Int. J. Bifurcat. Chaos. 2002 1985 2002

[4] N.A. Booth Baillière Clin. Haem. 1999 423 433

[5] S.D. Bungay, P.A. Gentry, R.D. Gentry Math. Med. Biol. 2003 105 129

[6] S. Butenas, K.G. Mann Biochemistry-Moscow 2002 3 12

[7] R.W. Colman, A.W. Clowes, J.N. George, J. Hirsh, V.J. Marder. Overview of Hemostasis, in Hemostasis and Thrombosis. 4th Edition, pp. 1-16, Editors: Colman R. W., Hirsh J., Marder V. J., Clowes A. W., and George J. N., Lippincott, Williams and Wilkins, 2001.

[8] C.M. Danforth, T. Orfeo, K.G. Mann, K.E. Brummel-Ziedins, S.J. Everse Math. Med. Biol. 2009 323 336

[9] B. Furie, B.C. Furie. Molecular basis of blood coagulation, in Hematology : Basic principles and practice. 3rd Edition, 1783-1804, Editors: Hoffman R., Benz E. J., Shattil S. J., Furie B., Cohen H. J., Silberstein L. E., and McGlave P., Churchill Livingstone, 2000.

[10] M.F. Hockin, K.C. Jones, S.J. Everse, K.G. Mann J. Biol. Chem. 2002 18322 18333

[11] M. Kalafatis, J.O. Egan, C. Vant Veer, K.M. Cawthern, K.G. Mann Crit. Rev. Eukar. Gene 1997 241 280

[12] A.L. Karsan, J.M. Harlan. The blood vessel wall, in Hematology : Basic principles and practice. 3rd Edition, 1770-1782, Editors: Hoffman R., Benz E. J., Shattil S. J., Furie B., Cohen H. J., Silberstein L. E., and McGlave P., Churchill Livingstone, 2000.

[13] A.L. Kuharsky, A.F. Fogelson Biophys. J. 2001 1050 1094

[14] D.E. Lacroix, M. Anand Int. J. Adv. Eng. Sci. Appl. Math. 2012 93 105

[15] S.N. Levine Science 1966 651 653

[16] H.R. Lijnen, D. Collen. Molecular and cellular basis of fibrinolysis, in Hematology : Basic principles and practice , 3rd Edition, 1804-1814, Editors: Hoffman R., Benz E. J., Shattil S. J., Furie B., Cohen H. J., Silberstein L. E., and McGlave P., Churchill Livingstone, 2000.

[17] D. Luan, M. Zai, J.D. Varner PLOS Comput. Biol. 2007 e142

[18] K.G. Mann, D. Gaffney, E.G. Bovill. Molecular biology, biochemistry, and lifespan of plasma coagulation factors. in Williams Hematology , 5th Edition, 1205-1226, Editors: Beutler E., Lichtman M., Coller B. S., and Kipps T. J., McGraw Hill Inc., 1995.

[19] K.G. Mann, K. Brummel-Ziedins, T. Orfeo, S. Butenas Blood Cell. Mol. Dis. 2006 108 117

[20] T. Orfeo, S. Butenas, K.E. Brummel-Ziedins, K.G. Mann J. Biol. Chem. 2005 42887 42896

[21] P.N. Paluri. Sensitivity analysis of a mathematical model for blood coagulation and fibrinolysis. Master’s thesis, Indian Institute of Technology Hyderabad , Yeddumailaram, AP, INDIA, 2012.

[22] M.A. Panteleev, M.V. Ovanesov, D.A. Kireev, A.M. Shibeko, E.I. Sinauridze, N.M. Ananyeva, A.A. Butylin, E.L. Saenko, F.I. Ataullakhanov Biophys. J. 2006 1489 1500

[23] A. Sequeira, R.F. Santos, T. Bodnar Math. Biosci. Eng. 2011 425 443

[24] Wells K. R., Blood Coagulation, http://health.yahoo.net/galecontent/blood-coagulation/2 Accessed May 10th 2012.

Cité par Sources :