A Kernel Representation of Dirac Structures for Infinite-dimensional Systems
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 295-308.

Voir la notice de l'article provenant de la source EDP Sciences

Dirac structures are used as the underlying structure to mathematically formalize port-Hamiltonian systems. This note approaches the Dirac structures for infinite-dimensional systems using the theory of linear relations on Hilbert spaces. First, a kernel representation for a Dirac structure is proposed. The one-to-one correspondence between Dirac structures and unitary operators is revisited. Further, the proposed kernel representation and a scattering representation are constructively related. Several illustrative examples are also presented in the paper.
DOI : 10.1051/mmnp/20149520

O.V. Iftime 1 ; M. Roman 2 ; A. Sandovici 2

1 Department of Economics, Econometrics and Finance, University of Groningen Nettelbosje 2, 9747 AE, Groningen, The Netherlands
2 Department of Mathematics, “Gheorghe Asachi” Technical University B-dul Carol I, nr. 11, 700506, Iaşi, Romania
@article{MMNP_2014_9_5_a19,
     author = {O.V. Iftime and M. Roman and A. Sandovici},
     title = {A {Kernel} {Representation} of {Dirac} {Structures} for {Infinite-dimensional} {Systems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {295--308},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149520/}
}
TY  - JOUR
AU  - O.V. Iftime
AU  - M. Roman
AU  - A. Sandovici
TI  - A Kernel Representation of Dirac Structures for Infinite-dimensional Systems
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 295
EP  - 308
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149520/
DO  - 10.1051/mmnp/20149520
LA  - en
ID  - MMNP_2014_9_5_a19
ER  - 
%0 Journal Article
%A O.V. Iftime
%A M. Roman
%A A. Sandovici
%T A Kernel Representation of Dirac Structures for Infinite-dimensional Systems
%J Mathematical modelling of natural phenomena
%D 2014
%P 295-308
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149520/
%R 10.1051/mmnp/20149520
%G en
%F MMNP_2014_9_5_a19
O.V. Iftime; M. Roman; A. Sandovici. A Kernel Representation of Dirac Structures for Infinite-dimensional Systems. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 295-308. doi : 10.1051/mmnp/20149520. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149520/

[1] R. Arens Pacific J. Math. Vol. 1961 9 23

[2] T.Ya. Azizov, I.S. Iokhvidov. Linear operators in spaces with an indefinite metric. John Wiley and Sons, Chichester, 1989.

[3] J. Bognar. Indefinite inner product spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1974.

[4] J. Cervera, A.J. Van Der Schaft, A. Baños Automatica 2007 212 225

[5] T. Courant Tr. Am. Math. Soc. 1990 631 661

[6] V. Derkach, S. Hassi, M. Malamud, H. De Snoo Tr. of Amer. Math. Soc. 2006 5351 5400

[7] I. Dorfman Phys. Lett. A 1987 240 246

[8] C. Foias, A.E. Frazho Journal of Operator Theory 1984 193 196

[9] G. Golo. Interconnection Structures in Port-Based Modeling: Tools for Analysis and Simulation. Ph.D. Thesis, University of Twente, September 2002.

[10] G. Golo, O.V. Iftime, A. van der Schaft. Interconnection Structures in Physical Systems: a Mathematical Formulation. In Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems, Notre Dame University, USA, Editors D.S. Gilliam and J. Rosenthal, 2002.

[11] G. Golo, O.V. Iftime, H. Zwart, A. van der Schaft. Tools for analysis of Dirac structures on Hilbert spaces. Memorandum no. 1729, Faculty of Applied Mathematics, University of Twente, July 2004.

[12] Y. Gorrec Le, H.J. Zwart, B. Maschke. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control and Optimization, 2005, 1864–1892.

[13] O.V. Iftime, A. Sandovici, G. Golo. Tools for analysis of Dirac Structures on Banach Spaces. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference, Sevilla, Spain, pp. 3856–3861, December 12–15, 2005.

[14] O.V. Iftime, A. Sandovici. Interconnection of Dirac structures via kernel/image representation. In Proceedings of the American Control Conference, San Francisco, California, USA, pp. 3571-3576, June 29 - July 1, 2011.

[15] O.V. Iftime, A. Sandovici ROMAI J. 2011 79 88

[16] M. Kurula, A. van der Schaft, H. Zwart. Composition of Infinite-Dimensional Linear Dirac-Type Structures. Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, 2006.

[17] M. Kurula, H.J. Zwart, A. Van Der Schaft, J. Behrndt Journal of Mathematical Analysis and Applications 2010 402 422

[18] R.V. Polyuga, A. Van Der Schaft Systems and Control Letters 2012 412 421

[19] R. Redheffer Journal of Mathematics and Physics 1960 269 286

[20] A. van der Schaft, B. Maschke. Modeling and Control of Mechanical Systems. Imperial College Press, Ch. Interconnected Mechanical Systems, part I: geometry of interconnection and implicit Hamiltonian systems, (1997), 1–15.

[21] A. van der Schaft. The Mathematics of Systems and Control: from Intelligent Control to Behavioral Systems. University of Groningen, Ch. Interconnection and Geometry, (1999), 203–217 .

[22] A. Van Der Schaft, B. Maschke Journal of Geometry and Physics 2002 166 194

[23] J. Villegas. A Port-Hamiltonian Approach to Distributed Parameter Systems. PhD Thesis, University of Twente, 2007.

[24] H. Yoshimura, H. Jacobs, J.E. Marsden. Interconnection of Dirac Structures and Lagrange-Dirac Dynamical Systems. In Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest, Hungary, (2010), 5–9.

Cité par Sources :