CMV Matrices with Super Exponentially Decaying Verblunsky Coefficients
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 282-294.

Voir la notice de l'article provenant de la source EDP Sciences

We investigate several equivalent notions of the Jost solution associated with a unitary CMV matrix and provide a necessary and sufficient conditions for the Jost solution to consist of entire functions of finite growth order in terms of super exponential decay of Verblunsky coefficients. We also establish several one-to-one correspondences between CMV matrices with super-exponentially decaying Verblunsky coefficients and spectral data associated with the first component of the Jost solution.
DOI : 10.1051/mmnp/20149519

M. Zinchenko 1

1 Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
@article{MMNP_2014_9_5_a18,
     author = {M. Zinchenko},
     title = {CMV {Matrices} with {Super} {Exponentially} {Decaying} {Verblunsky} {Coefficients}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {282--294},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149519},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149519/}
}
TY  - JOUR
AU  - M. Zinchenko
TI  - CMV Matrices with Super Exponentially Decaying Verblunsky Coefficients
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 282
EP  - 294
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149519/
DO  - 10.1051/mmnp/20149519
LA  - en
ID  - MMNP_2014_9_5_a18
ER  - 
%0 Journal Article
%A M. Zinchenko
%T CMV Matrices with Super Exponentially Decaying Verblunsky Coefficients
%J Mathematical modelling of natural phenomena
%D 2014
%P 282-294
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149519/
%R 10.1051/mmnp/20149519
%G en
%F MMNP_2014_9_5_a18
M. Zinchenko. CMV Matrices with Super Exponentially Decaying Verblunsky Coefficients. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 282-294. doi : 10.1051/mmnp/20149519. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149519/

[1] B. M. Brown, I. Knowles, R. Weikard J. London Math. Soc. 2003 383 401

[2] B. M. Brown, S. Naboko, R. Weikard Bull. London Math. Soc. 2005 727 737

[3] B. M. Brown, S. Naboko, R. Weikard Constr. Approx. 2009 155 174

[4] A. Bunse-Gerstner, L. Elsner Linear Algebra Appl. 1991 741 778

[5] M. J. Cantero, L. Moral, L. Velázquez Linear Algebra Appl. 2003 29 56

[6] D. Damanik, B. Simon. Jost functions and Jost solutions for Jacobi matrices. II. Decay and analyticity. Int. Math. Res. Not. (2006), Art. ID 19396, 1–32.

[7] L. D. Faddeyev J. Mathematical Phys. 1963 72 104

[8] R. Froese J. Differential Equations 1997 251 272

[9] F. Gesztesy, M. Zinchenko J. Approx. Theory 2006 172 213

[10] L.-S. Hahn, B. Epstein. Classical complex analysis. Jones Bartlett Learning, 1996.

[11] M. Hitrik Comm. Math. Phys. 1999 381 411

[12] A. Iantchenko, E. Korotyaev Inverse Problems 2011 115003

[13] A. Iantchenko, E. Korotyaev J. Differential Equations 2012 2823 2844

[14] A. Iantchenko, E. Korotyaev J. Math. Anal. Appl. 2012 1239 1253

[15] E. Korotyaev Asymptot. Anal. 2004 215 226

[16] E. Korotyaev Int. Math. Res. Not. 2004 3927 3936

[17] E. Korotyaev Russ. J. Math. Phys. 2011 427 439

[18] E. Korotyaev Asymptot. Anal. 2011 199 227

[19] M. Marletta, S. Naboko, R. Shterenberg, R. Weikard J. Anal. Math. 2012 221 247

[20] M. Marletta, R. Shterenberg, R. Weikard Comm. Math. Phys. 2010 465 484

[21] M. Marletta, R. Weikard Inverse Problems 2007 1677 1688

[22] R. Shterenberg, R. Weikard, M. Zinchenko Proc. Sympos. Pure Math. 2013 315 326

[23] B. Simon J. Funct. Anal. 2000 396 420

[24] B. Simon Int. Math. Res. Not. 2004 2837 2880

[25] B. Simon Bull. Amer. Math. Soc. (N.S.) 2005 431 460

[26] B. Simon. Orthogonal polynomials on the unit circle. Part 1: Classical theory, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005.

[27] B. Simon. Orthogonal polynomials on the unit circle. Part 2: Spectral theory, American Mathematical Society Colloquium Publications, vol. 54, American Mathematical Society, Providence, RI, 2005.

[28] B. Simon J. Comput. Appl. Math. 2007 120 154

[29] G. Teschl. Jacobi operators and completely integrable nonlinear lattices. Mathematical Surveys and Monographs, vol. 72, American Mathematical Society, Providence, RI, 2000.

[30] D. S. Watkins SIAM Rev. 1993 430 471

[31] R. Weikard, M. Zinchenko Inverse Problems 2010 55012 55021

[32] M. Zworski J. Funct. Anal. 1987 277 296

[33] M. Zworski SIAM J. Math. Anal. 2001 1324 1326

Cité par Sources :