Schrödinger Operators on a Half-Line with Inverse Square Potentials
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 170-176.

Voir la notice de l'article provenant de la source EDP Sciences

We consider Schrödinger operators Hα given by equation (1.1) below. We study the asymptotic behavior of the spectral density E(Hα,λ) for λ → 0 and the L1 → L∞ dispersive estimates associated to the evolution operator e− itHα. In particular we prove that for positive values of α, the spectral density E(Hα,λ) tends to zero as λ → 0 with higher speed compared to the spectral density of Schrödinger operators with a short-range potential V. We then show how the long time behavior of e− itHα depends on α. More precisely we show that the decay rate of e− itHα for t → ∞ can be made arbitrarily large provided we choose α large enough and consider a suitable operator norm.
DOI : 10.1051/mmnp/20149511

H. Kovařík 1 ; F. Truc 2

1 DICATAM, Sezione di Matematica, Università di Brescia, Via Branze, 38 - 25123 Brescia, Italy
2 Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d’Hères Cedex, France
@article{MMNP_2014_9_5_a10,
     author = {H. Kova\v{r}{\'\i}k and F. Truc},
     title = {Schr\"odinger {Operators} on a {Half-Line} with {Inverse} {Square} {Potentials}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {170--176},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149511/}
}
TY  - JOUR
AU  - H. Kovařík
AU  - F. Truc
TI  - Schrödinger Operators on a Half-Line with Inverse Square Potentials
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 170
EP  - 176
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149511/
DO  - 10.1051/mmnp/20149511
LA  - en
ID  - MMNP_2014_9_5_a10
ER  - 
%0 Journal Article
%A H. Kovařík
%A F. Truc
%T Schrödinger Operators on a Half-Line with Inverse Square Potentials
%J Mathematical modelling of natural phenomena
%D 2014
%P 170-176
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149511/
%R 10.1051/mmnp/20149511
%G en
%F MMNP_2014_9_5_a10
H. Kovařík; F. Truc. Schrödinger Operators on a Half-Line with Inverse Square Potentials. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 170-176. doi : 10.1051/mmnp/20149511. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149511/

[1] M. Abramowitz, I. Stegun. Handbook of mathematical functions. National Bureau of Standards, 1964.

[2] N. Burq, F. Planchon, J. Stalker, S. Tahvildar-Zadeh J. Funct. Anal. 2003 519 549

[3] N. Burq, F. Planchon, J. Stalker, S. Tahvildar-Zadeh Indiana Univ. Math. J. 2004 1665 1680

[4] N. Dunford, J.T. Schwartz. Linear Operators, Part II. New York, 1988.

[5] A. Erdelyi: Tables of integral transforms, Vol. 2. McGraw-Hill New York, 1954.

[6] M. B. Erdogan, W. R. Green Comm. Math. Phys. 2013 791 811

[7] L. Fanelli, V. Felli, M. A. Fontelos, A. Primo Comm. Math. Phys. 2013 1033 1067

[8] M. Goldberg Proc. Amer. Math. Soc. 2007 3171 3179

[9] M. Goldberg, W. Schlag Comm. Math. Phys. 2004 157 178

[10] M. Goldberg, L. Vega, N Visciglia. Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials. Int. Math Res. Not, (2006), article ID 13927.

[11] G. Grillo, H. Kovařík. Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov-Bohm magnetic field. J. Differential Equations, 256 (2014), 3889–3911.

[12] A. Jensen, T. Kato Duke Math. J. 1979 583 611

[13] A. Jensen, G. Nenciu Proc. Indian Acad. Sci. Math. Sci. 2006 375 392

[14] H. Kovařík Calc. Var. Partial Differential Equations 2012 351 374

[15] P.D. Milman, Yu. A. Semenov J. Funct. Anal. 2003 1 24

[16] P.D. Milman, Yu. A. Semenov J. Funct. Anal. 2004 373 398

[17] M. Murata J. Funct. Anal. 1982 10 56

[18] W. Schlag Comm. Math. Phys. 2005 87 117

[19] W. Schlag. Dispersive estimates for Schrödinger operators: a survey. Mathematical aspects of nonlinear dispersive equations. 255-285, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.

[20] G. Teschl. Mathematical Methods in Quantum Mechanics With Applications to Schrödinger Operators. American Mathematical Society Providence, Rhode Island, 2009.

[21] X.P. Wang Ann. Inst. Fourier 2006 1903 1945

[22] R. Weder J. Funct. Anal. 2000 37 68

[23] R. Weder J. Math. Anal. Appl. 2003 233 243

Cité par Sources :