Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_5_a10, author = {H. Kova\v{r}{\'\i}k and F. Truc}, title = {Schr\"odinger {Operators} on a {Half-Line} with {Inverse} {Square} {Potentials}}, journal = {Mathematical modelling of natural phenomena}, pages = {170--176}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149511}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149511/} }
TY - JOUR AU - H. Kovařík AU - F. Truc TI - Schrödinger Operators on a Half-Line with Inverse Square Potentials JO - Mathematical modelling of natural phenomena PY - 2014 SP - 170 EP - 176 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149511/ DO - 10.1051/mmnp/20149511 LA - en ID - MMNP_2014_9_5_a10 ER -
%0 Journal Article %A H. Kovařík %A F. Truc %T Schrödinger Operators on a Half-Line with Inverse Square Potentials %J Mathematical modelling of natural phenomena %D 2014 %P 170-176 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149511/ %R 10.1051/mmnp/20149511 %G en %F MMNP_2014_9_5_a10
H. Kovařík; F. Truc. Schrödinger Operators on a Half-Line with Inverse Square Potentials. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 170-176. doi : 10.1051/mmnp/20149511. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149511/
[1] M. Abramowitz, I. Stegun. Handbook of mathematical functions. National Bureau of Standards, 1964.
[2] J. Funct. Anal. 2003 519 549
, , ,[3] Indiana Univ. Math. J. 2004 1665 1680
, , ,[4] N. Dunford, J.T. Schwartz. Linear Operators, Part II. New York, 1988.
[5] A. Erdelyi: Tables of integral transforms, Vol. 2. McGraw-Hill New York, 1954.
[6] Comm. Math. Phys. 2013 791 811
,[7] Comm. Math. Phys. 2013 1033 1067
, , ,[8] Proc. Amer. Math. Soc. 2007 3171 3179
[9] Comm. Math. Phys. 2004 157 178
,[10] M. Goldberg, L. Vega, N Visciglia. Counterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials. Int. Math Res. Not, (2006), article ID 13927.
[11] G. Grillo, H. Kovařík. Weighted dispersive estimates for two-dimensional Schrödinger operators with Aharonov-Bohm magnetic field. J. Differential Equations, 256 (2014), 3889–3911.
[12] Duke Math. J. 1979 583 611
,[13] Proc. Indian Acad. Sci. Math. Sci. 2006 375 392
,[14] Calc. Var. Partial Differential Equations 2012 351 374
[15] J. Funct. Anal. 2003 1 24
,[16] J. Funct. Anal. 2004 373 398
,[17] J. Funct. Anal. 1982 10 56
[18] Comm. Math. Phys. 2005 87 117
[19] W. Schlag. Dispersive estimates for Schrödinger operators: a survey. Mathematical aspects of nonlinear dispersive equations. 255-285, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007.
[20] G. Teschl. Mathematical Methods in Quantum Mechanics With Applications to Schrödinger Operators. American Mathematical Society Providence, Rhode Island, 2009.
[21] Ann. Inst. Fourier 2006 1903 1945
[22] J. Funct. Anal. 2000 37 68
[23] J. Math. Anal. Appl. 2003 233 243
Cité par Sources :