Voir la notice de l'article provenant de la source EDP Sciences
A. Iosevich 1 ; M. Rudnev 2 ; I. Uriarte-Tuero 3
@article{MMNP_2014_9_5_a9, author = {A. Iosevich and M. Rudnev and I. Uriarte-Tuero}, title = {Theory of {Dimension} for {Large} {Discrete} {Sets} and {Applications}}, journal = {Mathematical modelling of natural phenomena}, pages = {148--169}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149510}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/} }
TY - JOUR AU - A. Iosevich AU - M. Rudnev AU - I. Uriarte-Tuero TI - Theory of Dimension for Large Discrete Sets and Applications JO - Mathematical modelling of natural phenomena PY - 2014 SP - 148 EP - 169 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/ DO - 10.1051/mmnp/20149510 LA - en ID - MMNP_2014_9_5_a9 ER -
%0 Journal Article %A A. Iosevich %A M. Rudnev %A I. Uriarte-Tuero %T Theory of Dimension for Large Discrete Sets and Applications %J Mathematical modelling of natural phenomena %D 2014 %P 148-169 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/ %R 10.1051/mmnp/20149510 %G en %F MMNP_2014_9_5_a9
A. Iosevich; M. Rudnev; I. Uriarte-Tuero. Theory of Dimension for Large Discrete Sets and Applications. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 148-169. doi : 10.1051/mmnp/20149510. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/
[1] Israel J. Math. 1994 193 201
[2] Int. Math. Res. Not. 2005 1411 1425
[3] Mathematika 1985 206 212
[4] K.J. Falconer. The geometry of fractal sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986. xiv+162 pp.
[5] Integers 2005 A8
,[6] Math. Res. Lett. 1999 625 630
,[7] N.H. Katz, G. Tardos. A new entropy inequality for the Erdös distance problem. Towards a theory of geometric graphs, 119-126, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, 2004.
[8] N.S. Landkof. Foundations of modern potential theory. Translated from the Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972. x+424 pp.
[9] Mathematika 1987 207 228
[10] P. Mattila. Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. xii+343 pp.
[11] J. Pach, P.K. Agarwal. Combinatorial geometry. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1995. xiv+354 pp.
[12] T. Ransford. Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232 pp.
[13] The Micha Sharir birthday issue. Discrete Comput. Geom. 2001 629 634
,[14] Combinatorica 2008 113 125
,[15] Internat. Math. Res. Notices 1999 547 567
[16] L. Guth, N. Katz. On the Erdös distinct distance problem in the plane. Preprint, 2011.
Cité par Sources :