Theory of Dimension for Large Discrete Sets and Applications
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 148-169.

Voir la notice de l'article provenant de la source EDP Sciences

We define two notions of discrete dimension based on the Minkowski and Hausdorff dimensions in the continuous setting. After proving some basic results illustrating these definitions, we apply this machinery to the study of connections between the Erdős and Falconer distance problems in geometric combinatorics and geometric measure theory, respectively.
DOI : 10.1051/mmnp/20149510

A. Iosevich 1 ; M. Rudnev 2 ; I. Uriarte-Tuero 3

1 Department of Mathematics, University of Rochester, Rochester, NY 14627
2 Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK
3 Department of Mathematics, Michigan State University, East Lansing MI 48824
@article{MMNP_2014_9_5_a9,
     author = {A. Iosevich and M. Rudnev and I. Uriarte-Tuero},
     title = {Theory of {Dimension} for {Large} {Discrete} {Sets} and {Applications}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {148--169},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/}
}
TY  - JOUR
AU  - A. Iosevich
AU  - M. Rudnev
AU  - I. Uriarte-Tuero
TI  - Theory of Dimension for Large Discrete Sets and Applications
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 148
EP  - 169
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/
DO  - 10.1051/mmnp/20149510
LA  - en
ID  - MMNP_2014_9_5_a9
ER  - 
%0 Journal Article
%A A. Iosevich
%A M. Rudnev
%A I. Uriarte-Tuero
%T Theory of Dimension for Large Discrete Sets and Applications
%J Mathematical modelling of natural phenomena
%D 2014
%P 148-169
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/
%R 10.1051/mmnp/20149510
%G en
%F MMNP_2014_9_5_a9
A. Iosevich; M. Rudnev; I. Uriarte-Tuero. Theory of Dimension for Large Discrete Sets and Applications. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 148-169. doi : 10.1051/mmnp/20149510. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/

[1] J. Bourgain Israel J. Math. 1994 193 201

[2] B. Erdogan Int. Math. Res. Not. 2005 1411 1425

[3] K.J. Falconer Mathematika 1985 206 212

[4] K.J. Falconer. The geometry of fractal sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986. xiv+162 pp.

[5] A. Iosevich, A., I. Łaba Integers 2005 A8

[6] N.H. Katz, T. Tao Math. Res. Lett. 1999 625 630

[7] N.H. Katz, G. Tardos. A new entropy inequality for the Erdös distance problem. Towards a theory of geometric graphs, 119-126, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, 2004.

[8] N.S. Landkof. Foundations of modern potential theory. Translated from the Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972. x+424 pp.

[9] P. Mattila Mathematika 1987 207 228

[10] P. Mattila. Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. xii+343 pp.

[11] J. Pach, P.K. Agarwal. Combinatorial geometry. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1995. xiv+354 pp.

[12] T. Ransford. Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232 pp.

[13] J. Solymosi, Cs. D. Tóth The Micha Sharir birthday issue. Discrete Comput. Geom. 2001 629 634

[14] J. Solymosi, V. Vu Combinatorica 2008 113 125

[15] T. Wolff Internat. Math. Res. Notices 1999 547 567

[16] L. Guth, N. Katz. On the Erdös distinct distance problem in the plane. Preprint, 2011.

Cité par Sources :