A. Iosevich 1 ; M. Rudnev 2 ; I. Uriarte-Tuero 3
@article{10_1051_mmnp_20149510,
author = {A. Iosevich and M. Rudnev and I. Uriarte-Tuero},
title = {Theory of {Dimension} for {Large} {Discrete} {Sets} and {Applications}},
journal = {Mathematical modelling of natural phenomena},
pages = {148--169},
year = {2014},
volume = {9},
number = {5},
doi = {10.1051/mmnp/20149510},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/}
}
TY - JOUR AU - A. Iosevich AU - M. Rudnev AU - I. Uriarte-Tuero TI - Theory of Dimension for Large Discrete Sets and Applications JO - Mathematical modelling of natural phenomena PY - 2014 SP - 148 EP - 169 VL - 9 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/ DO - 10.1051/mmnp/20149510 LA - en ID - 10_1051_mmnp_20149510 ER -
%0 Journal Article %A A. Iosevich %A M. Rudnev %A I. Uriarte-Tuero %T Theory of Dimension for Large Discrete Sets and Applications %J Mathematical modelling of natural phenomena %D 2014 %P 148-169 %V 9 %N 5 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149510/ %R 10.1051/mmnp/20149510 %G en %F 10_1051_mmnp_20149510
A. Iosevich; M. Rudnev; I. Uriarte-Tuero. Theory of Dimension for Large Discrete Sets and Applications. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 148-169. doi: 10.1051/mmnp/20149510
[1] Israel J. Math. 1994 193 201
[2] Int. Math. Res. Not. 2005 1411 1425
[3] Mathematika 1985 206 212
[4] K.J. Falconer. The geometry of fractal sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986. xiv+162 pp.
[5] , Integers 2005 A8
[6] , Math. Res. Lett. 1999 625 630
[7] N.H. Katz, G. Tardos. A new entropy inequality for the Erdös distance problem. Towards a theory of geometric graphs, 119-126, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, 2004.
[8] N.S. Landkof. Foundations of modern potential theory. Translated from the Russian by A. P. Doohovskoy. Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972. x+424 pp.
[9] Mathematika 1987 207 228
[10] P. Mattila. Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. xii+343 pp.
[11] J. Pach, P.K. Agarwal. Combinatorial geometry. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication. John Wiley Sons, Inc., New York, 1995. xiv+354 pp.
[12] T. Ransford. Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232 pp.
[13] , The Micha Sharir birthday issue. Discrete Comput. Geom. 2001 629 634
[14] , Combinatorica 2008 113 125
[15] Internat. Math. Res. Notices 1999 547 567
[16] L. Guth, N. Katz. On the Erdös distinct distance problem in the plane. Preprint, 2011.
Cité par Sources :