The Projection Method for Multidimensional Framelet and Wavelet Analysis
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 83-110.

Voir la notice de l'article provenant de la source EDP Sciences

The projection method is a simple way of constructing functions and filters by integrating multidimensional functions and filters along parallel superplanes in the space domain. Equivalently expressed in the frequency domain, the projection method constructs a new function by simply taking a cross-section of the Fourier transform of a multidimensional function. The projection method is linked to several areas such as box splines in approximation theory and the projection-slice theorem in image processing. In this paper, we shall systematically study and discuss the projection method in the area of multidimensional framelet and wavelet analysis. We shall see that the projection method not only provides a painless way for constructing new wavelets and framelets but also is a useful analysis tool for studying various optimal properties of multidimensional refinable functions and filters. Using the projection method, we shall explicitly and easily construct a tight framelet filter bank from every box spline filter having at least order one sum rule. As we shall see in this paper, the projection method is particularly suitable to be applied to frequency-based nonhomogeneous framelets and wavelets in any dimensions, and the periodization technique is a special case of the projection method for obtaining periodic wavelets and framelets from wavelets and framelets on Euclidean spaces.
DOI : 10.1051/mmnp/20149506

B. Han 1

1 Department of Mathematical and Statistical Sciences, University of Alberta Edmonton, Alberta T6G 2G1, Canada
@article{MMNP_2014_9_5_a5,
     author = {B. Han},
     title = {The {Projection} {Method} for {Multidimensional} {Framelet} and {Wavelet} {Analysis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {83--110},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149506/}
}
TY  - JOUR
AU  - B. Han
TI  - The Projection Method for Multidimensional Framelet and Wavelet Analysis
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 83
EP  - 110
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149506/
DO  - 10.1051/mmnp/20149506
LA  - en
ID  - MMNP_2014_9_5_a5
ER  - 
%0 Journal Article
%A B. Han
%T The Projection Method for Multidimensional Framelet and Wavelet Analysis
%J Mathematical modelling of natural phenomena
%D 2014
%P 83-110
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149506/
%R 10.1051/mmnp/20149506
%G en
%F MMNP_2014_9_5_a5
B. Han. The Projection Method for Multidimensional Framelet and Wavelet Analysis. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 83-110. doi : 10.1051/mmnp/20149506. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149506/

[1] C. de Boor, K. Höllig, S. Riemenschneider. Box splines. Series in Appl. Math. Sci. vol. 98. Springer-Verlag, New York, 1993.

[2] C. K. Chui. An introduction to wavelets. Academic Press, Inc., Boston, MA, 1992.

[3] C. K. Chui, W. J. He, J. Stöckler Appl. Comput. Harmon. Anal. 2002 224 262

[4] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Series, 61, SIAM, Philadelphia, 1992.

[5] I. Daubechies, B. Han Constr. Approx. 2004 325 352

[6] I. Daubechies, B. Han, A. Ron, Z. Shen Appl. Comput. Harmon. Anal. 2003 1 46

[7] M. Ehler J. Fourier Anal. Appl. 2007 511 532

[8] B. Han Math. Model. Nat. Phenom. 2013 18 47

[9] B. Han Appl. Comput. Harmon. Anal. 2012 169 196

[10] B. Han Appl. Comput. Harmon. Anal. 2010 330 353

[11] B. Han Int. J. Appl. Math. Appl. 2008 1 40

[12] B. Han. The projection method in wavelet analysis. in Splines and Wavelets: Athens 2005, G. Chen and M.J. Lai eds., (2006), 202–225.

[13] B. Han Appl. Comput. Harmon. Anal. 2004 277 292

[14] B. Han SIAM J. Matrix Anal. Appl. 2003 693 714

[15] B. Han J. Approx. Theory 2003 44 88

[16] B. Han J. Comput. Appl. Math. 2003 43 67

[17] B. Han Appl. Comput. Harmon. Anal. 2002 89 102

[18] B. Han Linear Algebra Appl. 2002 207 225

[19] B. Han J. Approx. Theory 2001 18 53

[20] B. Han SIAM J. Math. Anal. 2000 274 304

[21] B. Han Appl. Comput. Harmon. Anal. 1997 380 413

[22] B. Han. Wavelets. M.Sc. thesis at the Institute of Mathematics, Chinese Academy of Sciences, China, 1994.

[23] B. Han, R. Q. Jia Math. Comp. 2006 1287 1308

[24] B. Han, R. Q. Jia SIAM J. Numer. Anal. 1998 105 124

[25] B. Han, Q. Mo Commun. Pure Appl. Anal. 2007 689 718

[26] R. Q. Jia Math. Comp. 1998 647 665

[27] M. J. Lai, J. Stöckler Appl. Comput. Harmon. Anal. 2006 324 348

[28] J. Liao. New interpolatory subdivision schemes in computer graphics. M.Sc. thesis at the University of Alberta, Canada, 2004.

[29] Y. Meyer. Wavelets and operators. Cambridge University Press, Cambridge, 1992.

[30] A. Ron, Z. Shen J. Funct. Anal. 1997 408 447

Cité par Sources :