Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_5_a5, author = {B. Han}, title = {The {Projection} {Method} for {Multidimensional} {Framelet} and {Wavelet} {Analysis}}, journal = {Mathematical modelling of natural phenomena}, pages = {83--110}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149506}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149506/} }
TY - JOUR AU - B. Han TI - The Projection Method for Multidimensional Framelet and Wavelet Analysis JO - Mathematical modelling of natural phenomena PY - 2014 SP - 83 EP - 110 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149506/ DO - 10.1051/mmnp/20149506 LA - en ID - MMNP_2014_9_5_a5 ER -
%0 Journal Article %A B. Han %T The Projection Method for Multidimensional Framelet and Wavelet Analysis %J Mathematical modelling of natural phenomena %D 2014 %P 83-110 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149506/ %R 10.1051/mmnp/20149506 %G en %F MMNP_2014_9_5_a5
B. Han. The Projection Method for Multidimensional Framelet and Wavelet Analysis. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 83-110. doi : 10.1051/mmnp/20149506. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149506/
[1] C. de Boor, K. Höllig, S. Riemenschneider. Box splines. Series in Appl. Math. Sci. vol. 98. Springer-Verlag, New York, 1993.
[2] C. K. Chui. An introduction to wavelets. Academic Press, Inc., Boston, MA, 1992.
[3] Appl. Comput. Harmon. Anal. 2002 224 262
, ,[4] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Series, 61, SIAM, Philadelphia, 1992.
[5] Constr. Approx. 2004 325 352
,[6] Appl. Comput. Harmon. Anal. 2003 1 46
, , ,[7] J. Fourier Anal. Appl. 2007 511 532
[8] Math. Model. Nat. Phenom. 2013 18 47
[9] Appl. Comput. Harmon. Anal. 2012 169 196
[10] Appl. Comput. Harmon. Anal. 2010 330 353
[11] Int. J. Appl. Math. Appl. 2008 1 40
[12] B. Han. The projection method in wavelet analysis. in Splines and Wavelets: Athens 2005, G. Chen and M.J. Lai eds., (2006), 202–225.
[13] Appl. Comput. Harmon. Anal. 2004 277 292
[14] SIAM J. Matrix Anal. Appl. 2003 693 714
[15] J. Approx. Theory 2003 44 88
[16] J. Comput. Appl. Math. 2003 43 67
[17] Appl. Comput. Harmon. Anal. 2002 89 102
[18] Linear Algebra Appl. 2002 207 225
[19] J. Approx. Theory 2001 18 53
[20] SIAM J. Math. Anal. 2000 274 304
[21] Appl. Comput. Harmon. Anal. 1997 380 413
[22] B. Han. Wavelets. M.Sc. thesis at the Institute of Mathematics, Chinese Academy of Sciences, China, 1994.
[23] Math. Comp. 2006 1287 1308
,[24] SIAM J. Numer. Anal. 1998 105 124
,[25] Commun. Pure Appl. Anal. 2007 689 718
,[26] Math. Comp. 1998 647 665
[27] Appl. Comput. Harmon. Anal. 2006 324 348
,[28] J. Liao. New interpolatory subdivision schemes in computer graphics. M.Sc. thesis at the University of Alberta, Canada, 2004.
[29] Y. Meyer. Wavelets and operators. Cambridge University Press, Cambridge, 1992.
[30] J. Funct. Anal. 1997 408 447
,Cité par Sources :