The Infinite XXZ Quantum Spin Chain Revisited: Structure of Low Lying Spectral Bands and Gaps
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 44-72.

Voir la notice de l'article provenant de la source EDP Sciences

We study the structure of the spectrum of the infinite XXZ quantum spin chain, an anisotropic version of the Heisenberg model. The XXZ chain Hamiltonian preserves the number of down spins (or particle number), allowing to represent it as a direct sum of N-particle interacting discrete Schrödinger-type operators restricted to the fermionic subspace. In the Ising phase of the model we use this representation to give a detailed determination of the band and gap structure of the spectrum at low energy. In particular, we show that at sufficiently strong anisotropy the so-called droplet bands are separated from higher spectral bands uniformly in the particle number. Our presentation of all necessary background is self-contained and can serve as an introduction to the mathematical theory of the Heisenberg and XXZ quantum spin chains.
DOI : 10.1051/mmnp/20149504

C. Fischbacher 1 ; G. Stolz 2

1 School of Mathematics, Statistics and Actuarial Science University of Kent Canterbury, Kent CT2 7NF, UK
2 Department of Mathematics, University of Alabama at Birmingham Birmingham, AL 35294, USA
@article{MMNP_2014_9_5_a3,
     author = {C. Fischbacher and G. Stolz},
     title = {The {Infinite} {XXZ} {Quantum} {Spin} {Chain} {Revisited:} {Structure} of {Low} {Lying} {Spectral} {Bands} and {Gaps}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {44--72},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149504},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149504/}
}
TY  - JOUR
AU  - C. Fischbacher
AU  - G. Stolz
TI  - The Infinite XXZ Quantum Spin Chain Revisited: Structure of Low Lying Spectral Bands and Gaps
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 44
EP  - 72
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149504/
DO  - 10.1051/mmnp/20149504
LA  - en
ID  - MMNP_2014_9_5_a3
ER  - 
%0 Journal Article
%A C. Fischbacher
%A G. Stolz
%T The Infinite XXZ Quantum Spin Chain Revisited: Structure of Low Lying Spectral Bands and Gaps
%J Mathematical modelling of natural phenomena
%D 2014
%P 44-72
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149504/
%R 10.1051/mmnp/20149504
%G en
%F MMNP_2014_9_5_a3
C. Fischbacher; G. Stolz. The Infinite XXZ Quantum Spin Chain Revisited: Structure of Low Lying Spectral Bands and Gaps. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 44-72. doi : 10.1051/mmnp/20149504. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149504/

[1] M. Aizenman, S. Warzel Comm. Math. Phys. 2009 903 934

[2] D. Babbitt, L. Thomas Comm. Math. Phys. 1977 255 278

[3] D. Babbitt, L. Thomas J. Math. Phys. 1978 1699 1704

[4] D. Babbitt, L. Thomas J. Math. Anal. Appl. 1979 305 328

[5] D. Babbitt, E. Gutkin Lett. Math. Phys. 1990 91 99

[6] H. Bethe Z. Phys. 1931 205 226

[7] A. Borodin, I. Corwin, L. Petrov, T. Sasamoto. Spectral theory for the q-boson particle system. arXiv:1308.3475.

[8] R. Carmona, J. Lacroix. Spectral theory of random Schrödinger operators. Probability Theory and its Applications, Birkhäuser, Boston, 1990.

[9] V. Chulaevsky, Y. Suhov Math. Phys. Anal. Geom. 2009 117 139

[10] C. Fischbacher. On the spectrum of the XXZ spin chain, Master Thesis, Ludwig-Maximilians-Universität München, 2013. http://www.kent.ac.uk/smsas/maths/our-people/resources/thesis-cf299.pdf.

[11] E. Gutkin. Plancherel formula and critical spectral behaviour of the infinite XXZ chain. Quantum symmetries (Clausthal, 1991), 84-98, World Sci. Publ., River Edge, NJ, 1993.

[12] E. Gutkin. Heisenberg-Ising spin chain: Plancherel decomposition and Chebyshev polynomials. In Calogero-Moser-Sutherland Models (Montréal, QC, 1997), 177-192, CRM Ser. Math. Phys., Springer, New York, 2000.

[13] S. Haeseler, M. Keller. Generalized solutions and spectrum for Dirichlet forms on graphs, Random walks, boundaries and spectra. 181–199, Progr. Prob., 64, Birkhäuser, Basel, 2011.

[14] W. Hao, R. I. Nepomechie, A. J. Sommese Phys. Rev. E 2013 052113

[15] T. Koma, B. Nachtergaele Lett. Math. Phys. 1997 1 16

[16] T. Koma, B. Nachtergaele Adv. Theor. Math. Phys. 1998 533 558

[17] B. Nachtergaele, S. Starr Comm. Math. Phys. 2001 569 607

[18] B. Nachtergaele, W. Spitzer, S. Starr Ann. Henri Poincaré 2007 165 201

[19] M. Reed, B. Simon. Methods of modern mathematical physics, IV. Analysis of operators. Academic Press, New York, 1978.

[20] S. Starr. Some properties for the low-lying spectrum of the ferromagnetic, quantum XXZ spin system. PhD Thesis, UC Davis, 2001.

[21] G. Stolz. An introduction to the mathematics of Anderson localization. Entropy and the Quantum II (Tucson, AZ, 2010), 71-108, Contemp. Math., 552 Amer. Math. Soc., Providence, RI, 2011.

[22] L. Thomas I, J. Math. Anal. Appl. 1977 392 414

[23] J. Weidmann. Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics. Volume 68, Springer, New York-Heidelberg-Berlin, 1980.

Cité par Sources :