Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_5_a3, author = {C. Fischbacher and G. Stolz}, title = {The {Infinite} {XXZ} {Quantum} {Spin} {Chain} {Revisited:} {Structure} of {Low} {Lying} {Spectral} {Bands} and {Gaps}}, journal = {Mathematical modelling of natural phenomena}, pages = {44--72}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149504}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149504/} }
TY - JOUR AU - C. Fischbacher AU - G. Stolz TI - The Infinite XXZ Quantum Spin Chain Revisited: Structure of Low Lying Spectral Bands and Gaps JO - Mathematical modelling of natural phenomena PY - 2014 SP - 44 EP - 72 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149504/ DO - 10.1051/mmnp/20149504 LA - en ID - MMNP_2014_9_5_a3 ER -
%0 Journal Article %A C. Fischbacher %A G. Stolz %T The Infinite XXZ Quantum Spin Chain Revisited: Structure of Low Lying Spectral Bands and Gaps %J Mathematical modelling of natural phenomena %D 2014 %P 44-72 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149504/ %R 10.1051/mmnp/20149504 %G en %F MMNP_2014_9_5_a3
C. Fischbacher; G. Stolz. The Infinite XXZ Quantum Spin Chain Revisited: Structure of Low Lying Spectral Bands and Gaps. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 44-72. doi : 10.1051/mmnp/20149504. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149504/
[1] Comm. Math. Phys. 2009 903 934
,[2] Comm. Math. Phys. 1977 255 278
,[3] J. Math. Phys. 1978 1699 1704
,[4] J. Math. Anal. Appl. 1979 305 328
,[5] Lett. Math. Phys. 1990 91 99
,[6] Z. Phys. 1931 205 226
[7] A. Borodin, I. Corwin, L. Petrov, T. Sasamoto. Spectral theory for the q-boson particle system. arXiv:1308.3475.
[8] R. Carmona, J. Lacroix. Spectral theory of random Schrödinger operators. Probability Theory and its Applications, Birkhäuser, Boston, 1990.
[9] Math. Phys. Anal. Geom. 2009 117 139
,[10] C. Fischbacher. On the spectrum of the XXZ spin chain, Master Thesis, Ludwig-Maximilians-Universität München, 2013. http://www.kent.ac.uk/smsas/maths/our-people/resources/thesis-cf299.pdf.
[11] E. Gutkin. Plancherel formula and critical spectral behaviour of the infinite XXZ chain. Quantum symmetries (Clausthal, 1991), 84-98, World Sci. Publ., River Edge, NJ, 1993.
[12] E. Gutkin. Heisenberg-Ising spin chain: Plancherel decomposition and Chebyshev polynomials. In Calogero-Moser-Sutherland Models (Montréal, QC, 1997), 177-192, CRM Ser. Math. Phys., Springer, New York, 2000.
[13] S. Haeseler, M. Keller. Generalized solutions and spectrum for Dirichlet forms on graphs, Random walks, boundaries and spectra. 181–199, Progr. Prob., 64, Birkhäuser, Basel, 2011.
[14] Phys. Rev. E 2013 052113
, ,[15] Lett. Math. Phys. 1997 1 16
,[16] Adv. Theor. Math. Phys. 1998 533 558
,[17] Comm. Math. Phys. 2001 569 607
,[18] Ann. Henri Poincaré 2007 165 201
, ,[19] M. Reed, B. Simon. Methods of modern mathematical physics, IV. Analysis of operators. Academic Press, New York, 1978.
[20] S. Starr. Some properties for the low-lying spectrum of the ferromagnetic, quantum XXZ spin system. PhD Thesis, UC Davis, 2001.
[21] G. Stolz. An introduction to the mathematics of Anderson localization. Entropy and the Quantum II (Tucson, AZ, 2010), 71-108, Contemp. Math., 552 Amer. Math. Soc., Providence, RI, 2011.
[22] I, J. Math. Anal. Appl. 1977 392 414
[23] J. Weidmann. Linear Operators in Hilbert Spaces, Graduate Texts in Mathematics. Volume 68, Springer, New York-Heidelberg-Berlin, 1980.
Cité par Sources :