Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_5_a2, author = {X. Duan}, title = {Spectral {Theory} of the {Hermite} {Operator} on {Lp(Rn)}}, journal = {Mathematical modelling of natural phenomena}, pages = {39--43}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149503}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/} }
TY - JOUR AU - X. Duan TI - Spectral Theory of the Hermite Operator on Lp(Rn) JO - Mathematical modelling of natural phenomena PY - 2014 SP - 39 EP - 43 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/ DO - 10.1051/mmnp/20149503 LA - en ID - MMNP_2014_9_5_a2 ER -
X. Duan. Spectral Theory of the Hermite Operator on Lp(Rn). Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 39-43. doi : 10.1051/mmnp/20149503. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/
[1] Amer. J. Math. 1965 695 708
,[2] Integral Equations Operator Theory 2010 41 52
[3] V. Catană. The heat kernel and Green function of the generalized Hermite operator, and the abstract Cauchy problem for the abstract Hermite operator, in Pseudo-Differential Operators: Analysis, Applications and Computations,. Operator Theory: Advances and Applications 213 (2011), 155–171.
[4] X. Duan. The heat kernel and Green function of the sub-Laplacian on the Heisenberg group, in Pseudo-Differential Operators, Generalized Functions and Asymptotics, 231 (2013), 55–75.
[5] M. Reed, B. Simon. Fourier Analysis, Self-Adjointness. Academic Press, 1975.
[6] J. Math. Phys. 1970 140 148
[7] E. M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, 1993.
[8] Acta Math. 1951 189 224
[9] A. E. Taylor, D. Lay. Introduction to Functional Analysis. Second Edition, Wiley, 1980.
[10] Hokkaido Math. J. 2005 393 404
[11] Ann. Global Anal. Geom. 2005 271 283
[12] M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999.
[13] M. W. Wong. Partial Differential Equations: Topics in Fourier Analysis. CRC Press, 2014.
Cité par Sources :