Spectral Theory of the Hermite Operator on Lp(Rn)
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 39-43.

Voir la notice de l'article provenant de la source EDP Sciences

We prove that the minimal operator and the maximal operator of the Hermite operator are the same on Lp(ℝn) , 4 / 3 4. The domain and the spectrum of the minimal operator (=maximal operator) of the Hermite operator on Lp(ℝn), 4/3 4, are computed. In addition, we can give an estimate for the Lp-norm of the solution to the initial value problem for the heat equation governed by the minimal (maximal) operator for 4/34.
DOI : 10.1051/mmnp/20149503

X. Duan 1

1 Department of Mathematics and Statistics, York University 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
@article{MMNP_2014_9_5_a2,
     author = {X. Duan},
     title = {Spectral {Theory} of the {Hermite} {Operator} on {Lp(Rn)}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {39--43},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/}
}
TY  - JOUR
AU  - X. Duan
TI  - Spectral Theory of the Hermite Operator on Lp(Rn)
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 39
EP  - 43
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/
DO  - 10.1051/mmnp/20149503
LA  - en
ID  - MMNP_2014_9_5_a2
ER  - 
%0 Journal Article
%A X. Duan
%T Spectral Theory of the Hermite Operator on Lp(Rn)
%J Mathematical modelling of natural phenomena
%D 2014
%P 39-43
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/
%R 10.1051/mmnp/20149503
%G en
%F MMNP_2014_9_5_a2
X. Duan. Spectral Theory of the Hermite Operator on Lp(Rn). Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 39-43. doi : 10.1051/mmnp/20149503. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/

[1] R. A. Askey, S. Wainger Amer. J. Math. 1965 695 708

[2] V. Catană Integral Equations Operator Theory 2010 41 52

[3] V. Catană. The heat kernel and Green function of the generalized Hermite operator, and the abstract Cauchy problem for the abstract Hermite operator, in Pseudo-Differential Operators: Analysis, Applications and Computations,. Operator Theory: Advances and Applications 213 (2011), 155–171.

[4] X. Duan. The heat kernel and Green function of the sub-Laplacian on the Heisenberg group, in Pseudo-Differential Operators, Generalized Functions and Asymptotics, 231 (2013), 55–75.

[5] M. Reed, B. Simon. Fourier Analysis, Self-Adjointness. Academic Press, 1975.

[6] B. Simon J. Math. Phys. 1970 140 148

[7] E. M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, 1993.

[8] A. E. Taylor Acta Math. 1951 189 224

[9] A. E. Taylor, D. Lay. Introduction to Functional Analysis. Second Edition, Wiley, 1980.

[10] M. W. Wong Hokkaido Math. J. 2005 393 404

[11] M. W. Wong Ann. Global Anal. Geom. 2005 271 283

[12] M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999.

[13] M. W. Wong. Partial Differential Equations: Topics in Fourier Analysis. CRC Press, 2014.

Cité par Sources :