Spectral Theory of the Hermite Operator on Lp(Rn)
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 39-43 Cet article a éte moissonné depuis la source EDP Sciences

Voir la notice de l'article

We prove that the minimal operator and the maximal operator of the Hermite operator are the same on Lp(ℝn) , 4 / 3

4. The domain and the spectrum of the minimal operator (=maximal operator) of the Hermite operator on Lp(ℝn), 4/3

4, are computed. In addition, we can give an estimate for the Lp-norm of the solution to the initial value problem for the heat equation governed by the minimal (maximal) operator for 4/3

4.
DOI : 10.1051/mmnp/20149503

X. Duan  1

1 Department of Mathematics and Statistics, York University 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
@article{10_1051_mmnp_20149503,
     author = {X. Duan},
     title = {Spectral {Theory} of the {Hermite} {Operator} on {Lp(Rn)}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {39--43},
     year = {2014},
     volume = {9},
     number = {5},
     doi = {10.1051/mmnp/20149503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/}
}
TY  - JOUR
AU  - X. Duan
TI  - Spectral Theory of the Hermite Operator on Lp(Rn)
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 39
EP  - 43
VL  - 9
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/
DO  - 10.1051/mmnp/20149503
LA  - en
ID  - 10_1051_mmnp_20149503
ER  - 
%0 Journal Article
%A X. Duan
%T Spectral Theory of the Hermite Operator on Lp(Rn)
%J Mathematical modelling of natural phenomena
%D 2014
%P 39-43
%V 9
%N 5
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149503/
%R 10.1051/mmnp/20149503
%G en
%F 10_1051_mmnp_20149503
X. Duan. Spectral Theory of the Hermite Operator on Lp(Rn). Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 39-43. doi: 10.1051/mmnp/20149503

[1] R. A. Askey, S. Wainger Amer. J. Math. 1965 695 708

[2] V. Catană Integral Equations Operator Theory 2010 41 52

[3] V. Catană. The heat kernel and Green function of the generalized Hermite operator, and the abstract Cauchy problem for the abstract Hermite operator, in Pseudo-Differential Operators: Analysis, Applications and Computations,. Operator Theory: Advances and Applications 213 (2011), 155–171.

[4] X. Duan. The heat kernel and Green function of the sub-Laplacian on the Heisenberg group, in Pseudo-Differential Operators, Generalized Functions and Asymptotics, 231 (2013), 55–75.

[5] M. Reed, B. Simon. Fourier Analysis, Self-Adjointness. Academic Press, 1975.

[6] B. Simon J. Math. Phys. 1970 140 148

[7] E. M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, 1993.

[8] A. E. Taylor Acta Math. 1951 189 224

[9] A. E. Taylor, D. Lay. Introduction to Functional Analysis. Second Edition, Wiley, 1980.

[10] M. W. Wong Hokkaido Math. J. 2005 393 404

[11] M. W. Wong Ann. Global Anal. Geom. 2005 271 283

[12] M. W. Wong. An Introduction to Pseudo-Differential Operators. Second Edition, World Scientific, 1999.

[13] M. W. Wong. Partial Differential Equations: Topics in Fourier Analysis. CRC Press, 2014.

Cité par Sources :