Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_5_a1, author = {V. Catan\u{a}}, title = {Lp-boundedness of {Multilinear} {Pseudo-differential} {Operators} on {Zn} and {Tn}}, journal = {Mathematical modelling of natural phenomena}, pages = {17--38}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149502}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149502/} }
TY - JOUR AU - V. Catană TI - Lp-boundedness of Multilinear Pseudo-differential Operators on Zn and Tn JO - Mathematical modelling of natural phenomena PY - 2014 SP - 17 EP - 38 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149502/ DO - 10.1051/mmnp/20149502 LA - en ID - MMNP_2014_9_5_a1 ER -
%0 Journal Article %A V. Catană %T Lp-boundedness of Multilinear Pseudo-differential Operators on Zn and Tn %J Mathematical modelling of natural phenomena %D 2014 %P 17-38 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149502/ %R 10.1051/mmnp/20149502 %G en %F MMNP_2014_9_5_a1
V. Catană. Lp-boundedness of Multilinear Pseudo-differential Operators on Zn and Tn. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 17-38. doi : 10.1051/mmnp/20149502. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149502/
[1] Studia Math. 1992 165 182
,[2] J. Operator Theory 2005 387 399
, , ,[3] D. Bose, S. Madan, P. Mohanty, S. Shrivastava. Relations between bilinear multipliers on ℝn, Tn and ℤn. arXiv: 0903.4052v1 [math.CA], 24 Mar 2009.
[4] J. Pseudo-Differ. Oper. Appl. 2011 367 375
[5] V. Catană, S. Molahajloo, M.W. Wong. Lp-boundedness of multilinear pseudo-differential operators. In Operator Theory: Advances and Applications. vol. 205, 167-180, Birhäuser Verlag, Basel, 2009.
[6] M. Charalambides, M. Christ. Near-extremizers of Young’s inequality for discrete groups. arXiv: 1112.3716v1 [math.CA], 16 Dec. 2011.
[7] Advances in Mathematics 2002 124 164
,[8] J. Aust. Math. Soc. 2006 65 80
,[9] L. Grafakos. Classical Fourier Analysis. Second Edition, Springer, 2008.
[10] R.V. Kadison, J.R. Ringrose. Fundamentals of the Theory of Operator Algebras: Elementary Theory. Academic Press, 1983.
[11] S. Molahajloo, M.W. Wong. Pseudo-differential operators on S1. In Operator Theory: Advances and Applications, vol. 189, 297-306, Birhäuser Verlag, Basel, 2008.
[12] S. Molahajloo. Pseudo-differential operators on Z. In Operator Theory: Advances and Applications, vol. 205, 213–221, Birhäuser Verlag, Basel, 2009.
[13] M. Pirhayati. Spectral Theory of Pseudo-Differential Operators on S1. In Pseudo-Differential Operators: Analysis, Applications and Computations, Operator Theory: Advanced and Applications 213, Springer Basel AG 2011.
[14] J. Fourier Anal. Appl. 2010 943 982
,[15] M. Ruzhansky, V. Turunen. Pseudo-Differential Operators and Symmetries. Birhäuser, 2010.
[16] Numerical Functional Analysis and Optimization 2009 1098 1124
,[17] M.W. Wong. Discrete Fourier Analysis. Birhäuser, 2011.
Cité par Sources :