Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 1-16.

Voir la notice de l'article provenant de la source EDP Sciences

We explicitly give all stationary solutions to the focusing cubic NLS on the line, in the presence of a defect of the type Dirac’s delta or delta prime. The models prove interesting for two features: first, they are exactly solvable and all quantities can be expressed in terms of elementary functions. Second, the associated dynamics is far from being trivial. In particular, the NLS with a delta prime potential shows two symmetry breaking bifurcations: the first concerns the ground state and was already known. The second emerges on the first excited state, and up to now had not been revealed. We highlight such bifurcations by computing the nonlinear and the no-defect limits of the stationary solutions.
DOI : 10.1051/mmnp/20149501

R. Adami 1 ; D. Noja 2

1 Dipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino, Torino, Italy
2 Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Milano, Italy
@article{MMNP_2014_9_5_a0,
     author = {R. Adami and D. Noja},
     title = {Exactly {Solvable} {Models} and {Bifurcations:} the {Case} of the {Cubic} {NLS} with a \ensuremath{\delta} or a \ensuremath{\delta}' {Interaction} in {Dimension} {One}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2014},
     doi = {10.1051/mmnp/20149501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149501/}
}
TY  - JOUR
AU  - R. Adami
AU  - D. Noja
TI  - Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 1
EP  - 16
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149501/
DO  - 10.1051/mmnp/20149501
LA  - en
ID  - MMNP_2014_9_5_a0
ER  - 
%0 Journal Article
%A R. Adami
%A D. Noja
%T Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One
%J Mathematical modelling of natural phenomena
%D 2014
%P 1-16
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149501/
%R 10.1051/mmnp/20149501
%G en
%F MMNP_2014_9_5_a0
R. Adami; D. Noja. Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 1-16. doi : 10.1051/mmnp/20149501. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149501/

[1] R. Adami, C. Cacciapuoti, D. Finco, D. Noja Rev. Math. Phys 2011 409 451

[2] R. Adami, D. Noja. Existence of dynamics for a 1-d NLS equation in dimension one. J. Phys. A, 42, 49, 495302 (2009), 19pp.

[3] R. Adami, D. Noja Commun. Math. Phys. 2013 247 289

[4] R. Adami, D. Noja, N. Visciglia Disc. Cont. Dyn. Syst. B 2013 1155 1188

[5] S. Albeverio, Z. Brzeźniak, L. Dabrowski J. Func. An. 1995 220 254

[6] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden. Solvable Models in Quantum Mechanics. Springer-Verlag, New York, 1988.

[7] S. Albeverio, P. Kurasov. Singular Perturbations of Differential Operators. Cambridge University Press, 2000.

[8] D. Cao Xiang, A.B. Malomed Phys. Lett. A 1995 177 182

[9] T. Cheon, T. Shigehara Phys. Lett. A 1998 111 116

[10] P. Exner, S.S. Manko. Approximations of quantum-graph vertex couplings by singularly scaled rank-one operators. Lett. Math. Phys. (2014), to appear, arXiv:1310.5856.

[11] P. Exner, H. Neidhardt, V.A. Zagrebnov Commun. Math. Phys 2001 593 612

[12] R. Fukuizumi, L. Jeanjean Disc. Cont. Dyn. Syst. (A) 2008 129 144

[13] R. Fukuizumi, M. Ohta, T. Ozawa Ann. Inst. H. Poincaré - AN 2008 837 845

[14] R. Fukuizumi, A. Sacchetti J. Stat. Phys 2011 1546 1594

[15] Yu.D. Golovaty, R.O. Hryniv J. Phys. A Math. Theor. 2011 049802

[16] R.H. Goodman, P.J. Holmes, M.I. Weinstein Physica D 2004 215 248

[17] R.K. Jackson, M.I. Weinstein J. Stat. Phys. 2004 881 905

[18] E. Kirr, P.G. Kevrekidis, D.E. Pelinovsky Commun. Math. Phys. 2011 795 844

[19] S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim, Y. Sivan Physica D 2008 1103 1128

[20] D. Witthaut, S. Mossmann, H.J. Korsch J. Phys. A 2005 1777 1702

[21] V.E. Zakharov, A.B. Shabat Funct. Anal. Appl. 1974 226 235

Cité par Sources :