Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_5_a0, author = {R. Adami and D. Noja}, title = {Exactly {Solvable} {Models} and {Bifurcations:} the {Case} of the {Cubic} {NLS} with a \ensuremath{\delta} or a \ensuremath{\delta}' {Interaction} in {Dimension} {One}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--16}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2014}, doi = {10.1051/mmnp/20149501}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149501/} }
TY - JOUR AU - R. Adami AU - D. Noja TI - Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One JO - Mathematical modelling of natural phenomena PY - 2014 SP - 1 EP - 16 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149501/ DO - 10.1051/mmnp/20149501 LA - en ID - MMNP_2014_9_5_a0 ER -
%0 Journal Article %A R. Adami %A D. Noja %T Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One %J Mathematical modelling of natural phenomena %D 2014 %P 1-16 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149501/ %R 10.1051/mmnp/20149501 %G en %F MMNP_2014_9_5_a0
R. Adami; D. Noja. Exactly Solvable Models and Bifurcations: the Case of the Cubic NLS with a δ or a δ′ Interaction in Dimension One. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 5, pp. 1-16. doi : 10.1051/mmnp/20149501. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149501/
[1] Rev. Math. Phys 2011 409 451
, , ,[2] R. Adami, D. Noja. Existence of dynamics for a 1-d NLS equation in dimension one. J. Phys. A, 42, 49, 495302 (2009), 19pp.
[3] Commun. Math. Phys. 2013 247 289
,[4] Disc. Cont. Dyn. Syst. B 2013 1155 1188
, ,[5] J. Func. An. 1995 220 254
, ,[6] S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden. Solvable Models in Quantum Mechanics. Springer-Verlag, New York, 1988.
[7] S. Albeverio, P. Kurasov. Singular Perturbations of Differential Operators. Cambridge University Press, 2000.
[8] Phys. Lett. A 1995 177 182
,[9] Phys. Lett. A 1998 111 116
,[10] P. Exner, S.S. Manko. Approximations of quantum-graph vertex couplings by singularly scaled rank-one operators. Lett. Math. Phys. (2014), to appear, arXiv:1310.5856.
[11] Commun. Math. Phys 2001 593 612
, ,[12] Disc. Cont. Dyn. Syst. (A) 2008 129 144
,[13] Ann. Inst. H. Poincaré - AN 2008 837 845
, ,[14] J. Stat. Phys 2011 1546 1594
,[15] J. Phys. A Math. Theor. 2011 049802
,[16] Physica D 2004 215 248
, ,[17] J. Stat. Phys. 2004 881 905
,[18] Commun. Math. Phys. 2011 795 844
, ,[19] Physica D 2008 1103 1128
, , , ,[20] J. Phys. A 2005 1777 1702
, ,[21] Funct. Anal. Appl. 1974 226 235
,Cité par Sources :