A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 131-152.

Voir la notice de l'article provenant de la source EDP Sciences

We review mathematical results about the qualitative structure of chemotherapy protocols that were obtained with the methods of optimal control. As increasingly more complex features are incorporated into the mathematical model—progressing from models for homogeneous, chemotherapeutically sensitive tumor cell populations to models for heterogeneous agglomerations of subpopulations of various sensitivities to models that include tumor immune-system interactions—the structures of optimal controls change from bang-bang solutions (which correspond to maximum dose rate chemotherapy with restperiods) to solutions that favor singular controls (representing reduced dose rates). Medically, this corresponds to a transition from standard MTD (maximum tolerated dose) type protocols to chemo-switch strategies towards metronomic dosing.
DOI : 10.1051/mmnp/20149409

U. Ledzewicz 1 ; H. Schättler 2

1 Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653, USA
2 Dept. of Electrical and Systems Engr., Washington University, St. Louis, Missouri, 63130-4899, USA
@article{MMNP_2014_9_4_a8,
     author = {U. Ledzewicz and H. Sch\"attler},
     title = {A {Review} of {Optimal} {Chemotherapy} {Protocols:} {From} {MTD} towards {Metronomic} {Therapy}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {131--152},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2014},
     doi = {10.1051/mmnp/20149409},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149409/}
}
TY  - JOUR
AU  - U. Ledzewicz
AU  - H. Schättler
TI  - A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 131
EP  - 152
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149409/
DO  - 10.1051/mmnp/20149409
LA  - en
ID  - MMNP_2014_9_4_a8
ER  - 
%0 Journal Article
%A U. Ledzewicz
%A H. Schättler
%T A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy
%J Mathematical modelling of natural phenomena
%D 2014
%P 131-152
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149409/
%R 10.1051/mmnp/20149409
%G en
%F MMNP_2014_9_4_a8
U. Ledzewicz; H. Schättler. A Review of Optimal Chemotherapy Protocols: From MTD towards Metronomic Therapy. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 131-152. doi : 10.1051/mmnp/20149409. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149409/

[1] N. André, L. Padovani, E. Pasquier Fut. Oncology 2011 385 394

[2] N. Andre, S. Abed, D. Orbach, C. Armari Alla, L. Padovani, E. Pasquier, J.C. Gentet, A. Verschuur Oncotarget 2011 960 965

[3] G. Bocci, K. Nicolaou, R.S. Kerbel Cancer Res. 2002 6938 6943

[4] B. Bonnard, M. Chyba. Singular Trajectories and their Role in Control Theory. Mathématiques Applications, Vol. 40. Springer Verlag, Paris, 2003.

[5] T. Browder, C.E. Butterfield, B.M. Kräling, B. Shi, B. Marshall, M.S. O’Reilly, J. Folkman Cancer Res. 2000 1878 1886

[6] M. Eisen. Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics, Vol. 30. Springer Verlag, 1979.

[7] A. Friedman Math. Model. Nat. Phenom. 2012 1 26

[8] R.A. Gatenby, A.S. Silva, R.J. Gillies, B.R. Frieden Cancer Research 2009 4894 4903

[9] J.H. Goldie Cancer and Metastasis Review 2001 63 68

[10] J.H. Goldie, A. Coldman. Drug Resistance in Cancer. Cambridge University Press, 1998.

[11] J. Greene, O. Lavi, M. Gottesman, D. Levy Bull. Math. Biol. 2014 627 653

[12] J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer Verlag, New York, 1983.

[13] P. Hahnfeldt, L. Hlatky Rad. Res. 1998 681 687

[14] P. Hahnfeldt, J. Folkman, L. Hlatky J. of Theo. Biol. 2003 545 554

[15] D. Hanahan, G. Bergers, E. Bergsland J. Clin. Invest. 2000 1045 1047

[16] B. Kamen, E. Rubin, J. Aisner, E. Glatstein J. Clinical Oncology 2000 2935 2937

[17] T.J. Kindt, B.A. Osborne, R.A. Goldsby. Kuby Immunology. W.H. Freeman, 2006.

[18] D. Kirschner, J.C. Panetta J. of Math. Biol. 1998 235 252

[19] G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D.J. Hicklin, P. Bohlen, R.S. Kerbel J. Clin. Invest. 2000 R15 R24

[20] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson Bull. Math. Biol. 1994 295 321

[21] U. Ledzewicz, K. Bratton, H. Schättler. A 3-compartment model for chemotherapy of heterogeneous tumor populations. Acta Mat. Appl., (2014), to appear.

[22] U. Ledzewicz, M. Naghnaeian, H. Schättler J. of Math. Biol. 2012 557 577

[23] U. Ledzewicz, O. Olumoye, H. Schättler Math. Biosci. Engr. (MBE) 2012 787 802

[24] U. Ledzewicz, H. Schättler J. of Optim. Th. Appl. (JOTA) 2002 609 637

[25] U. Ledzewicz, H. Schättler J. of Biol. Syst. 2002 183 206

[26] U. Ledzewicz, H. Schättler Discr. Cont. Dyn. Syst., Ser. B 2006 129 150

[27] U. Ledzewicz, H. Schättler, M. Reisi Gahrooi, S. Mahmoudian Dehkordi Math. Biosci. Engr. (MBE) 2013 803 819

[28] R. Martin, K.L. Teo. Optimal Control of Drug Administration in Cancer Chemotherapy. World Scientific Publishers, 1994.

[29] A. Matzavinos, M. Chaplain, V.A. Kuznetsov Math. Med. Biol. 2004 1 34

[30] A. D’Onofrio Physica D 2005 202 235

[31] A. D’Onofrio Chaos, Solitons and Fractals 2007 261 268

[32] A. D’Onofrio Math. Comp. Modelling 2008 614 637

[33] D. Pardoll Ann. Rev. of Immun. 2003 807 839

[34] E. Pasquier, U. Ledzewicz SMB Newsletter 2013 9 10

[35] E. Pasquier, M. Kavallaris, N. André Nat. Rev.| Clin. Onc. 2010 455 465

[36] K. Pietras, D. Hanahan J. Clin. Onc. 2005 939 952

[37] L.G. De Pillis, A. Radunskaya J. Theo. Med. 2001 79 100

[38] L.G. De Pillis, A. Radunskaya, C.L. Wiseman Cancer Res. 2005 7950 7958

[39] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko. The Mathematical Theory of Optimal Processes, MacMillan, New York, 1964.

[40] A.V. Rao, D.A. Benson, G.T. Huntington, C. Francolin, C.L. Darby, M.A. Patterson. User’s Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method. University of Florida Report, 2008.

[41] H. Schättler, U. Ledzewicz. Geometric Optimal Control. Springer, New York, 2012.

[42] H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi, M. Reisi Gahrooi. A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy. Proc. of the 51st IEEE Conference on Decision and Control, Maui, Hawaii, December 2012, 7691–7696.

[43] N.V. Stepanova Biophys. 1980 917 923

[44] G.W. Swan Math. Biosci. 1990 237 284

[45] J.B. Swann, M.J. Smyth J. Clin. Invest. 2007 1137 1146

[46] A. Swierniak Proc. 12th IMACS World Congress, Paris 1988 170 172

[47] A. Swierniak J. of Biol. Syst. 1995 41 54

[48] A. Swierniak, U. Ledzewicz, H. Schättler Int. J. Appl. Math. Comp. Sci. 2003 357 368

[49] A. Swierniak, A. Polanski, M. Kimmel Cell Prolif. 1996 117 139

[50] A. Swierniak, J. Smieja Nonlin. Anal. 2000 375 386

[51] H.P. De Vladar, J.A. González J. of Theo. Biol. 2004 335 348

[52] S.D. Weitman, E. Glatstein, B.A. Kamen J. of Clin. Onc. 1993 820 821

Cité par Sources :