Linear Size-structured Population Models with Spacial Diffusion and Optimal Harvesting Problems
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 122-130.

Voir la notice de l'article provenant de la source EDP Sciences

We first investigate linear size-structured population models with spacial diffusion. Existence of a unique mild solution is established. Then we consider a harvesting problem for linear size-structured models with diffusion and show the existence of an optimal harvesting effort to maximize the total price or total harvest.
DOI : 10.1051/mmnp/20149408

N. Kato 1

1 Faculty of Electrical and Computer Engineering, Institute of Science and Engineering Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
@article{MMNP_2014_9_4_a7,
     author = {N. Kato},
     title = {Linear {Size-structured} {Population} {Models} with {Spacial} {Diffusion} and {Optimal} {Harvesting} {Problems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {122--130},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2014},
     doi = {10.1051/mmnp/20149408},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149408/}
}
TY  - JOUR
AU  - N. Kato
TI  - Linear Size-structured Population Models with Spacial Diffusion and Optimal Harvesting Problems
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 122
EP  - 130
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149408/
DO  - 10.1051/mmnp/20149408
LA  - en
ID  - MMNP_2014_9_4_a7
ER  - 
%0 Journal Article
%A N. Kato
%T Linear Size-structured Population Models with Spacial Diffusion and Optimal Harvesting Problems
%J Mathematical modelling of natural phenomena
%D 2014
%P 122-130
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149408/
%R 10.1051/mmnp/20149408
%G en
%F MMNP_2014_9_4_a7
N. Kato. Linear Size-structured Population Models with Spacial Diffusion and Optimal Harvesting Problems. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 122-130. doi : 10.1051/mmnp/20149408. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149408/

[1] A.S. Ackleh, H.T. Banks, K. Deng Nonlinear Anal. 2002 727 748

[2] S. Anita. Analysis and control of age-dependent population dynamics. Kluwer Acad. Publ., Dordrech, 2000.

[3] A. Calsina, J. Saldaña J. Math. Biol. 1995 335 364

[4] D. Daners, P. Koch Medina. Abstract evolution equations, periodic problems and applications. Pitman Research Notes in Mathematics Series Vol. 279, Longman Scientific Technical, 1992.

[5] A.M. de Roos. A gentle introduction to physiologically structured population models. in Structured-population models in marine, terrestrial, and freshwater systems (S. Tuljapurkar and H. Caswell eds.), Chapman Hall, New York, 1996.

[6] J.Z. Farkas, T. Hagen J. Math. Anal. Appl. 2007 119 136

[7] N. Hritonenko, Yu. Yatsenko, R. Goetz, A. Xabadia J. Biological Dynamics 2012 41 58

[8] N. Kato, H. Torikata Abstract Appl. Anal. 1997 207 226

[9] N. Kato Abstract Appl. Anal. 2000 191 206

[10] N. Kato J. Math. Anal. Appl. 2004 234 256

[11] N. Kato J. Ecol. Dev. 2006 6 19

[12] C. Walker Monatsh Math. 2013 481 501

[13] G.F. Webb. Theory of Nonlinear Age-Dependent Population Dyanmics. Marcel Dekker, New York, 1985.

[14] G.F. Webb. Population models structured by age, size, and spatial position. in Structured population models in biology and epidemiology, Lecture Notes in Math. 1936, Springer, Berlin, 2008.

Cité par Sources :