Optimal Vaccination, Treatment, and Preventive Campaigns in Regard to the SIR Epidemic Model
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 105-121.

Voir la notice de l'article provenant de la source EDP Sciences

The Susceptible-Infected-Recovered (SIR) model for the spread of an infectious disease in a population of constant size is considered. In order to control the spread of infection, we propose the model with four bounded controls which describe vaccination of newborns, vaccination of the susceptible, treatment of infected, and indirect strategies aimed at a reduction of the incidence rate (e. g. quarantine). The optimal control problem of minimizing the total number of the infected individuals on a given time interval is stated and solved. The optimal solutions are obtained with the use of the Pontryagin Maximum Principle and investigated analytically. Numerical results are presented to illustrate the optimal solutions.
DOI : 10.1051/mmnp/20149407

E.V. Grigorieva 1 ; E.N. Khailov 2

1 Department of Mathematics and Computer Sciences, Texas Woman’s University, Denton, TX 76204, USA
2 Department of Computational Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992, Russia
@article{MMNP_2014_9_4_a6,
     author = {E.V. Grigorieva and E.N. Khailov},
     title = {Optimal {Vaccination,} {Treatment,} and {Preventive} {Campaigns} in {Regard} to the {SIR} {Epidemic} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {105--121},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2014},
     doi = {10.1051/mmnp/20149407},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149407/}
}
TY  - JOUR
AU  - E.V. Grigorieva
AU  - E.N. Khailov
TI  - Optimal Vaccination, Treatment, and Preventive Campaigns in Regard to the SIR Epidemic Model
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 105
EP  - 121
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149407/
DO  - 10.1051/mmnp/20149407
LA  - en
ID  - MMNP_2014_9_4_a6
ER  - 
%0 Journal Article
%A E.V. Grigorieva
%A E.N. Khailov
%T Optimal Vaccination, Treatment, and Preventive Campaigns in Regard to the SIR Epidemic Model
%J Mathematical modelling of natural phenomena
%D 2014
%P 105-121
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149407/
%R 10.1051/mmnp/20149407
%G en
%F MMNP_2014_9_4_a6
E.V. Grigorieva; E.N. Khailov. Optimal Vaccination, Treatment, and Preventive Campaigns in Regard to the SIR Epidemic Model. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 105-121. doi : 10.1051/mmnp/20149407. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149407/

[1] R.M. Anderson, R.M. May. Infections Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, UK, 1992.

[2] S. Anita, V. Arnaǔtu, V. Capasso. An Introduction to Optimal Control Problems in Life Sciences and Economics. Birkhäuser, USA, 2011.

[3] N.T.J. Bailey. The Mathematical Theory of Epidemics. Griffin, London, 1957.

[4] H. Behncke Optim. Contr. Appl. Met. 2000 269 285

[5] A. Bressan, B. Piccoli. Introduction to the Mathematical Theory of Control. AIMS Series on Applied Mathematics, Vol. 2, AIMS, USA, 2007.

[6] V. Capasso. Mathematical Structures of Epidemical Systems. Lecture Notes in Biomathematics, Vol. 97, Springer, Heidelberg, 2008.

[7] C. Castilho Electron. J. Differential Equations 2006 1 11

[8] D.J. Daley, J. Gani. Epidemic Modelling: An Introduction. Cambridge University Press, Cambridge, 1999.

[9] B.P. Demidovich. Lectures on Stability Theory. Nauka, Moscow, 1967. (Russian)

[10] A.V. Dmitruk SIAM J. Control Optim. 1992 1087 1091

[11] K.R. Fister, S. Lenhart, J.S. Mcnally Electron. J. Differentail Equations 1998 1 12

[12] E.V. Grigorieva, E.N. Khailov J. Dyn. Control Syst. 2005 157 176

[13] E. Grigorieva, N. Bondarenko, E. Khailov, A. Korobeinikov. Finite-dimensional methods for optimal control of autothermal thermophilic aerobic digestion. In Industrial Waste, eds. K.Y. Show and X. Guo, Intech, Croatia, 2012, 91–120.

[14] E. Grigorieva, N. Bondarenko, E. Khailov, A. Korobeinikov Revista de Matemática: Teoría y Aplicaciones 2013 103 118

[15] E.V. Grigorieva, E.N. Khailov, A. Korobeinikov Math. Biosci. Eng. 2013 1067 1094

[16] N.K. Gupta, R.E. Rink Math. Biosci. 1973 383 396

[17] P. Hartman. Ordinary Differential Equations. John Wiley Sons, New York-London-Sydney, 1964.

[18] H.W. Hethcote, P. Waltman Math. Biosci. 1973 365 381

[19] D.L. Jaquette Oper. Res. 1972 1142 1151

[20] H.R. Joshi Optim. Contr. Appl. Met. 2002 199 213

[21] H.R. Joshi, S. Lenhart, M.Y. Li, L. Wang In AMS Volume on Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges, AMS Contemporary Mathematics Series 2006 187 207

[22] M.J. Keeling, P. Rohani. Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton, 2008.

[23] U. Ledzewicz, H. Schättler. On optimal sigular controls for a general SIR-model with vaccination and treatment. Discret. Contin. Dyn. S., supplement volume (2011), 981–990.

[24] E.B. Lee, L. Marcus. Foundations of Optimal Control Theory. John Wiley Sons, New York, 1967.

[25] S. Lenhart, J.T. Workman. Optimal Control Applied to Biological Models. CRC Press, Taylor Francis Group, London, 2007.

[26] R. Morton, K.H. Wickwire Adv. Appl. Probab. 1974 622 635

[27] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko. Mathematical Theory of Optimal Processes. John Wiley Sons, New York, 1962.

[28] R. Smith?. Modelling Disease Ecology with Mathematics. AIMS Series on Differential Equations Dynamical Systems, Vol. 2, AIMS, USA, 2008.

[29] A.N. Tikhonov, A.B. Vasil’eva, A.G. Sveshnikov. Differential Equations. Springer-Verlag, Berlin-Heidelberg-New York, 1985.

[30] F.P. Vasil’ev. Optimization Methods. Factorial Press, Moscow, 2002. (Russian)

[31] K.H. Wickwire Theor. Popul. Biol. 1977 182 238

[32] G.S. Zaric, M.L. Brandeau Math. Biosci. 2001 33 58

Cité par Sources :