Voir la notice de l'article provenant de la source EDP Sciences
E.V. Grigorieva 1 ; E.N. Khailov 2
@article{MMNP_2014_9_4_a6, author = {E.V. Grigorieva and E.N. Khailov}, title = {Optimal {Vaccination,} {Treatment,} and {Preventive} {Campaigns} in {Regard} to the {SIR} {Epidemic} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {105--121}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2014}, doi = {10.1051/mmnp/20149407}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149407/} }
TY - JOUR AU - E.V. Grigorieva AU - E.N. Khailov TI - Optimal Vaccination, Treatment, and Preventive Campaigns in Regard to the SIR Epidemic Model JO - Mathematical modelling of natural phenomena PY - 2014 SP - 105 EP - 121 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149407/ DO - 10.1051/mmnp/20149407 LA - en ID - MMNP_2014_9_4_a6 ER -
%0 Journal Article %A E.V. Grigorieva %A E.N. Khailov %T Optimal Vaccination, Treatment, and Preventive Campaigns in Regard to the SIR Epidemic Model %J Mathematical modelling of natural phenomena %D 2014 %P 105-121 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149407/ %R 10.1051/mmnp/20149407 %G en %F MMNP_2014_9_4_a6
E.V. Grigorieva; E.N. Khailov. Optimal Vaccination, Treatment, and Preventive Campaigns in Regard to the SIR Epidemic Model. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 105-121. doi : 10.1051/mmnp/20149407. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149407/
[1] R.M. Anderson, R.M. May. Infections Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, UK, 1992.
[2] S. Anita, V. Arnaǔtu, V. Capasso. An Introduction to Optimal Control Problems in Life Sciences and Economics. Birkhäuser, USA, 2011.
[3] N.T.J. Bailey. The Mathematical Theory of Epidemics. Griffin, London, 1957.
[4] Optim. Contr. Appl. Met. 2000 269 285
[5] A. Bressan, B. Piccoli. Introduction to the Mathematical Theory of Control. AIMS Series on Applied Mathematics, Vol. 2, AIMS, USA, 2007.
[6] V. Capasso. Mathematical Structures of Epidemical Systems. Lecture Notes in Biomathematics, Vol. 97, Springer, Heidelberg, 2008.
[7] Electron. J. Differential Equations 2006 1 11
[8] D.J. Daley, J. Gani. Epidemic Modelling: An Introduction. Cambridge University Press, Cambridge, 1999.
[9] B.P. Demidovich. Lectures on Stability Theory. Nauka, Moscow, 1967. (Russian)
[10] SIAM J. Control Optim. 1992 1087 1091
[11] Electron. J. Differentail Equations 1998 1 12
, ,[12] J. Dyn. Control Syst. 2005 157 176
,[13] E. Grigorieva, N. Bondarenko, E. Khailov, A. Korobeinikov. Finite-dimensional methods for optimal control of autothermal thermophilic aerobic digestion. In Industrial Waste, eds. K.Y. Show and X. Guo, Intech, Croatia, 2012, 91–120.
[14] Revista de Matemática: Teoría y Aplicaciones 2013 103 118
, , ,[15] Math. Biosci. Eng. 2013 1067 1094
, ,[16] Math. Biosci. 1973 383 396
,[17] P. Hartman. Ordinary Differential Equations. John Wiley Sons, New York-London-Sydney, 1964.
[18] Math. Biosci. 1973 365 381
,[19] Oper. Res. 1972 1142 1151
[20] Optim. Contr. Appl. Met. 2002 199 213
[21] In AMS Volume on Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges, AMS Contemporary Mathematics Series 2006 187 207
, , ,[22] M.J. Keeling, P. Rohani. Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton, 2008.
[23] U. Ledzewicz, H. Schättler. On optimal sigular controls for a general SIR-model with vaccination and treatment. Discret. Contin. Dyn. S., supplement volume (2011), 981–990.
[24] E.B. Lee, L. Marcus. Foundations of Optimal Control Theory. John Wiley Sons, New York, 1967.
[25] S. Lenhart, J.T. Workman. Optimal Control Applied to Biological Models. CRC Press, Taylor Francis Group, London, 2007.
[26] Adv. Appl. Probab. 1974 622 635
,[27] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko. Mathematical Theory of Optimal Processes. John Wiley Sons, New York, 1962.
[28] R. Smith?. Modelling Disease Ecology with Mathematics. AIMS Series on Differential Equations Dynamical Systems, Vol. 2, AIMS, USA, 2008.
[29] A.N. Tikhonov, A.B. Vasil’eva, A.G. Sveshnikov. Differential Equations. Springer-Verlag, Berlin-Heidelberg-New York, 1985.
[30] F.P. Vasil’ev. Optimization Methods. Factorial Press, Moscow, 2002. (Russian)
[31] Theor. Popul. Biol. 1977 182 238
[32] Math. Biosci. 2001 33 58
,Cité par Sources :