Evolutionary Dynamics of Cancer Cell Populations under Immune Selection Pressure and Optimal Control of Chemotherapy
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 88-104.

Voir la notice de l'article provenant de la source EDP Sciences

Increasing experimental evidence suggests that epigenetic and microenvironmental factors play a key role in cancer progression. In this respect, it is now generally recognized that the immune system can act as an additional selective pressure, which modulates tumor development and leads, through cancer immunoediting, to the selection for resistance to immune effector mechanisms. This may have serious implications for the design of effective anti-cancer protocols. Motivated by these considerations, we present a mathematical model for the dynamics of cancer and immune cells under the effects of chemotherapy and immunity-boosters. Tumor cells are modeled as a population structured by a continuous phenotypic trait, that is related to the level of resistance to receptor-induced cell death triggered by effector lymphocytes. The level of resistance can vary over time due to the effects of epigenetic modifications. In the asymptotic regime of small epimutations, we highlight the ability of the model to reproduce cancer immunoediting. In an optimal control framework, we tackle the problem of designing effective anti-cancer protocols. The results obtained suggest that chemotherapeutic drugs characterized by high cytotoxic effects can be useful for treating tumors of large size. On the other hand, less cytotoxic chemotherapy in combination with immunity-boosters can be effective against tumors of smaller size. Taken together, these results support the development of therapeutic protocols relying on combinations of less cytotoxic agents and immune-boosters to fight cancer in the early stages.
DOI : 10.1051/mmnp/20149406

G. Dimitriu 1 ; T. Lorenzi 2, 3, 4 ; R. Ştefănescu 5

1 “Grigore T. Popa” University of Medicine and Pharmacy, Department of Mathematics and Informatics, Iaşi 700115, Romania
2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
3 CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
4 INRIA-Paris-Rocquencourt, EPC MAMBA, Domaine de Voluceau, BP105, 78153 Le Chesnay Cedex
5 Virginia Tech, Department of Computer Science, Blacksburg, VA, 24060, USA
@article{MMNP_2014_9_4_a5,
     author = {G. Dimitriu and T. Lorenzi and R. \c{S}tef\u{a}nescu},
     title = {Evolutionary {Dynamics} of {Cancer} {Cell} {Populations} under {Immune} {Selection} {Pressure} and {Optimal} {Control} of {Chemotherapy}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {88--104},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2014},
     doi = {10.1051/mmnp/20149406},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149406/}
}
TY  - JOUR
AU  - G. Dimitriu
AU  - T. Lorenzi
AU  - R. Ştefănescu
TI  - Evolutionary Dynamics of Cancer Cell Populations under Immune Selection Pressure and Optimal Control of Chemotherapy
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 88
EP  - 104
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149406/
DO  - 10.1051/mmnp/20149406
LA  - en
ID  - MMNP_2014_9_4_a5
ER  - 
%0 Journal Article
%A G. Dimitriu
%A T. Lorenzi
%A R. Ştefănescu
%T Evolutionary Dynamics of Cancer Cell Populations under Immune Selection Pressure and Optimal Control of Chemotherapy
%J Mathematical modelling of natural phenomena
%D 2014
%P 88-104
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149406/
%R 10.1051/mmnp/20149406
%G en
%F MMNP_2014_9_4_a5
G. Dimitriu; T. Lorenzi; R. Ştefănescu. Evolutionary Dynamics of Cancer Cell Populations under Immune Selection Pressure and Optimal Control of Chemotherapy. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 88-104. doi : 10.1051/mmnp/20149406. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149406/

[1] B.M. Adams, H.T. Banks, H.-D. Kwon, H.T. Tran Math. Biosci. Eng. 2004 223 241

[2] A.V. Antipov, A.S. Bratus Zh. Vychisl. Mat. Mat. Fiz. 2009 1907 1919

[3] F. Billy, J. Clairambault Discrete Contin. Dyn. Syst. Ser. B 2013 865 889

[4] T. Burden, J. Ernstberger, K.R. Fister Discrete Contin. Dyn. Syst. Ser. B 2004 135 146

[5] F. Castiglione, B. Piccoli Bull. Math. Biol. 2006 255 274

[6] A.J. Coldman, J.M. Murray Math. Biosci. 2000 187 200

[7] M. Costa, J. Boldrini, R. Bassanezi Math. Biosci. 1995 191 209

[8] M. Delitala, T. Lorenzi J. Theoret. Biol. 2012 88 102

[9] L. Desvillettes, P.E. Jabin, S. Mischler, G. Raoul Commun. Math. Sci. 2008 729 747

[10] O. Diekmann, P.E. Jabin, S. Mischler, B. Perthame Theor. Pop. Biol. 2005 257 271

[11] G. Dimitriu Intern. J. Computer Math. 1998 197 209

[12] P. Dua, V. Dua, E. Pistikopoulos Comput. Chem. Eng. 2008 99 107

[13] G.P. Dunn, A.T. Bruce, H. Ikeda, L.J. Old, R.D. Schreiber Nature Immunol. 2002 991 998

[14] M. Dupage, C. Mazumdar, L.M. Schmidt, A.F. Cheung, T. Jacks Nature 2012 405 9

[15] M. Engelhart, D. Lebiedz, S. Sager Math. Biosci. 2011 123 134

[16] K.R. Fister, J. Donnelly Math. Biosci. Eng. 2005 499 510

[17] K.R. Fister, J.C. Panetta SIAM J. Appl. Math. 2000 1059 1072

[18] K.R. Fister, J.C. Panetta SIAM J. Appl. Math. 2003 1954 1971

[19] W.H. Fleming, R.W. Rishel. Deterministic and Stochastic Optimal Control. Springer-Verlag, 1975.

[20] A. Ghaffari, N. Naserifar Comput. Biol. Med. 2010 261 270

[21] J. Goldie, A. Coldman. Drug resistance in cancer: mechanisms and models. Cambridge University Press, 1998.

[22] M. Gottesman Annu. Rev. Med. 2002 615 627

[23] F.H. Igney, P.H. Krammer J. Leukoc. Biol. 2002 907 20

[24] L.S. Jennings, M.E. Fisher, K.L. Teo, C.J. Goh. MISER3 Optimal Control Software: Theory and User Manual. Department of Mathematics, The University of Western Australia, Nedlands, WA 6907, Australia, 2004.

[25] M.I. Kamien, N.L. Schwartz. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management, Advanced Textbooks in Economics. Second ed., vol. 31. North-Holland, 1991.

[26] N. Komarova, D. Wodarz Proc Natl Acad Sci USA 2005 9714 9719

[27] U. Ledzewicz, A. D’Onofrio, H. Maurer, H. Schäettler Math. Biosci. 2009 13 26

[28] U. Ledzewicz, M. Naghnaeian, H. Schättler Appl. Math. 2011 17 31

[29] T. Lorenzi, A. Lorz, G. Restori. Asymptotic dynamics in populations structured by sensitivity to global warming and habitat shrinking. Acta Appl. Math., 2013, DOI 10.1007/s10440-013-9849-9.

[30] K. Liu World J. Gastrointest. Oncol. 2010 399 406

[31] A. Lorz, T. Lorenzi, M.E. Hochberg, J. Clairambault, B. Perthame ESAIM: Mathematical Modelling and Numerical Analysis 2013 377 399

[32] A. Lorz, T. Lorenzi, J. Clairambault, A. Escargueil, B. Perthame. Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. preprint, 2014.

[33] D.L. Lukes. Differential Equations: Classical to Controlled, vol. 162. Academic Press, 1982.

[34] R. Martin, K. Teo. Optimal Drug Administration in Cancer Chemotherapy. World Scientific, Singapore, 1994.

[35] A. Matveev, A. Savkin Syst. Control Lett. 2002 311 321

[36] L. Merlo, J. Pepper, B. Reid, C. Maley Nat. Rev Cancer 2006 924 935

[37] J. Murray Math. Biosci. 1990 273 287

[38] L.G. De Pillis, W. Gu, K.R. Fister, T. Head, K. Maples, A. Murugan, T. Neal, K. Yoshida Math. Biosci. 2007 292 315

[39] L.G. De Pillis, W. Gu, A.E. Radunskaya J. Theor. Biol. 2006 841 862

[40] L.G. De Pillis, A.E. Radunskaya, C.L. Wiseman Cancer Res. 2005 7950 7958

[41] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko. The Mathematical Theory of Optimal Processes. Gordon and Breach, 1962.

[42] V. Shankaran, H. Ikeda, A.T. Bruce, J.M. White, P.E. Swanson, L.J. Old, R.D. Schreiber Nature 2001 1107 1111

[43] G.W. Swan Math. Biosci. 1990 237 284

[44] Z. Szymanska Int. J. Appl. Math. Comput. Sci. 2003 407 418

[45] C.L. Zindl, D.D. Chaplin Science 2010 697 698

Cité par Sources :