A Numerical Method for the Controls of the Heat Equation
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 65-87.

Voir la notice de l'article provenant de la source EDP Sciences

This work is devoted to analyze a numerical scheme for the approximation of the linear heat equation’s controls. It is known that, due to the regularizing effect, the efficient computation of the null controls for parabolic type equations is a difficult problem. A possible cure for the bad numerical behavior of the approximating controls consists of adding a singular perturbation depending on a small parameter ε which transforms the heat equation into a wave equation. A space discretization of step h leads us to a system of ordinary differential equations. The aim of this paper is to show that there exists a sequence of exact controls of the corresponding perturbed semi-discrete systems which converges to a control of the original heat equation when both h (the mesh size) and ε (the perturbation parameter) tend to zero.
DOI : 10.1051/mmnp/20149405

I. F. Bugariu 1 ; S. Micu 1

1 Facultatea de Matematica si Stiinte ale Naturii, Universitatea din Craiova, 200585, Romania
@article{MMNP_2014_9_4_a4,
     author = {I. F. Bugariu and S. Micu},
     title = {A {Numerical} {Method} for the {Controls} of the {Heat} {Equation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2014},
     doi = {10.1051/mmnp/20149405},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149405/}
}
TY  - JOUR
AU  - I. F. Bugariu
AU  - S. Micu
TI  - A Numerical Method for the Controls of the Heat Equation
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 65
EP  - 87
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149405/
DO  - 10.1051/mmnp/20149405
LA  - en
ID  - MMNP_2014_9_4_a4
ER  - 
%0 Journal Article
%A I. F. Bugariu
%A S. Micu
%T A Numerical Method for the Controls of the Heat Equation
%J Mathematical modelling of natural phenomena
%D 2014
%P 65-87
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149405/
%R 10.1051/mmnp/20149405
%G en
%F MMNP_2014_9_4_a4
I. F. Bugariu; S. Micu. A Numerical Method for the Controls of the Heat Equation. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 65-87. doi : 10.1051/mmnp/20149405. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149405/

[1] S.A. Avdonin, S.A. Ivanov. Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press, 1995.

[2] F. Boyer, J. Le Rousseau. Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. Poincarè, Available online 12 September 2013, http://dx.doi.org/10.1016/j.anihpc.2013.07.011.

[3] E. Fernàndez-Cara, A. Münch. Numerical null-controllability of a semi-linear heat equation via a least squares method. C. R. Acad. Sci. Paris, Ser. I 340 (2005).

[4] C. Carthel, R. Glowinski, J.-L. Lions JOTA 1994 429 484

[5] H.O. Fattorini, D.L. Russell Exact controllability theorems for linear parabolic equations in one space dimension Arch. Ration. Mech. Anal. 1971 272 292

[6] H.O. Fattorini, D.L. Russell Q. Appl. Math. 1974 45 69

[7] A.V. Fursikov, O.Yu. Imanuvilov. Controllability of Evolution Equations. Lecture Notes Series, Number 34, Seoul National University, Korea, 1996.

[8] T.J.R. Hughes. The finite element method: Linear static and dynamic finite element analysis. Prentice Hall Inc., Englewood Cliffs, NJ, 1987.

[9] A.E. Ingham J. London Math. Soc. 1934 29 32

[10] E. Isaakson, H.B. Keller. Analysis of Numerical Methods, John Wiley and Sons, 1996.

[11] V. Komornik, P. Loreti. Fourier Series in Control Theory, Springer-Verlag, New-York, 2005.

[12] R. Lattés, J.-L. Lions. The Method of Quasi-Reversibility. Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics vol 18, New York: American Elsevier, 1969.

[13] G. Lebeau, L. Robbiano Comm. Partial Differential Equations 1995 335 356

[14] J. L. Lions. Controlabilité exacte, stabilisation et perturbations des systèmes distribués. Vol. 1, Masson, Paris, 1988.

[15] J.-L. Lions, E. Zuazua Rev. Mat. de la UCM 1997 481 523

[16] J.-L. Lions, E. Zuazua J. Anal. Math. 1997 225 249

[17] A. López, E. Zuazua. Some new results related to the null-controllability of the 1-d heat equation. Sèm EDP, Ecole Polytech. VIII (1998), 1–22.

[18] A. López, X. Zhang, E. Zuazua J. Math. Pures Appl. 2000 741 808

[19] S. Micu, E. Zuazua. An Introduction to the Controllability of Partial Differential Equations. “Quelques questions de thèorie du contròle". Sari, T., ed., Collection Travaux en Cours Hermann, (2004), 69-157.

[20] S. Micu, E. Zuazua C. R. Acad. Sci. Paris, Ser. I 2011 673 677

[21] S. Micu, E. Zuazua Systems & Control Letters 2011 406 413

[22] A. Münch, P. Pedregal. Numerical null controllability of the heat equation through a least squares and variational approach. European Journal of Applied Mathematics, Published online: 13 February 2014, http://dx.doi.org/10.1017/S0956792514000023.

[23] A. Münch, E. Zuazua. Numerical approximation of the null controls for the heat equation through transmutation. J. Inverse Problems 26(8) (2010), doi:10.1088/0266-5611/26/8/085018.

[24] R.E.A.C. Paley, N. Wiener. Fourier Transforms in Complex Domains. AMS Colloq. Publ., Vol. 19, Amer. Math. Soc., New-York, 1934.

[25] M. Tucsnak, G. Weiss. Observation and Control for Operator Semigroups. Birkhuser Advanced Texts, Springer, Basel, 2009.

[26] C.F. Weber Int. J. Heat Mass Transfer 1981 1783 92

[27] R.M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, New-York, 1980.

Cité par Sources :