@article{10_1051_mmnp_20149405,
author = {I. F. Bugariu and S. Micu},
title = {A {Numerical} {Method} for the {Controls} of the {Heat} {Equation}},
journal = {Mathematical modelling of natural phenomena},
pages = {65--87},
year = {2014},
volume = {9},
number = {4},
doi = {10.1051/mmnp/20149405},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149405/}
}
TY - JOUR AU - I. F. Bugariu AU - S. Micu TI - A Numerical Method for the Controls of the Heat Equation JO - Mathematical modelling of natural phenomena PY - 2014 SP - 65 EP - 87 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149405/ DO - 10.1051/mmnp/20149405 LA - en ID - 10_1051_mmnp_20149405 ER -
I. F. Bugariu; S. Micu. A Numerical Method for the Controls of the Heat Equation. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 65-87. doi: 10.1051/mmnp/20149405
[1] S.A. Avdonin, S.A. Ivanov. Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press, 1995.
[2] F. Boyer, J. Le Rousseau. Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations. Ann. Inst. Poincarè, Available online 12 September 2013, http://dx.doi.org/10.1016/j.anihpc.2013.07.011.
[3] E. Fernàndez-Cara, A. Münch. Numerical null-controllability of a semi-linear heat equation via a least squares method. C. R. Acad. Sci. Paris, Ser. I 340 (2005).
[4] , , JOTA 1994 429 484
[5] , Exact controllability theorems for linear parabolic equations in one space dimension Arch. Ration. Mech. Anal. 1971 272 292
[6] , Q. Appl. Math. 1974 45 69
[7] A.V. Fursikov, O.Yu. Imanuvilov. Controllability of Evolution Equations. Lecture Notes Series, Number 34, Seoul National University, Korea, 1996.
[8] T.J.R. Hughes. The finite element method: Linear static and dynamic finite element analysis. Prentice Hall Inc., Englewood Cliffs, NJ, 1987.
[9] J. London Math. Soc. 1934 29 32
[10] E. Isaakson, H.B. Keller. Analysis of Numerical Methods, John Wiley and Sons, 1996.
[11] V. Komornik, P. Loreti. Fourier Series in Control Theory, Springer-Verlag, New-York, 2005.
[12] R. Lattés, J.-L. Lions. The Method of Quasi-Reversibility. Applications to Partial Differential Equations. Modern Analytic and Computational Methods in Science and Mathematics vol 18, New York: American Elsevier, 1969.
[13] , Comm. Partial Differential Equations 1995 335 356
[14] J. L. Lions. Controlabilité exacte, stabilisation et perturbations des systèmes distribués. Vol. 1, Masson, Paris, 1988.
[15] , Rev. Mat. de la UCM 1997 481 523
[16] , J. Anal. Math. 1997 225 249
[17] A. López, E. Zuazua. Some new results related to the null-controllability of the 1-d heat equation. Sèm EDP, Ecole Polytech. VIII (1998), 1–22.
[18] , , J. Math. Pures Appl. 2000 741 808
[19] S. Micu, E. Zuazua. An Introduction to the Controllability of Partial Differential Equations. “Quelques questions de thèorie du contròle". Sari, T., ed., Collection Travaux en Cours Hermann, (2004), 69-157.
[20] , C. R. Acad. Sci. Paris, Ser. I 2011 673 677
[21] , Systems & Control Letters 2011 406 413
[22] A. Münch, P. Pedregal. Numerical null controllability of the heat equation through a least squares and variational approach. European Journal of Applied Mathematics, Published online: 13 February 2014, http://dx.doi.org/10.1017/S0956792514000023.
[23] A. Münch, E. Zuazua. Numerical approximation of the null controls for the heat equation through transmutation. J. Inverse Problems 26(8) (2010), doi:10.1088/0266-5611/26/8/085018.
[24] R.E.A.C. Paley, N. Wiener. Fourier Transforms in Complex Domains. AMS Colloq. Publ., Vol. 19, Amer. Math. Soc., New-York, 1934.
[25] M. Tucsnak, G. Weiss. Observation and Control for Operator Semigroups. Birkhuser Advanced Texts, Springer, Basel, 2009.
[26] Int. J. Heat Mass Transfer 1981 1783 92
[27] R.M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, New-York, 1980.
Cité par Sources :