Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2014_9_4_a1, author = {S. Ani\c{t}a}, title = {Zero-Stabilization for {Some} {Diffusive} {Models} with {State} {Constraints}}, journal = {Mathematical modelling of natural phenomena}, pages = {6--19}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2014}, doi = {10.1051/mmnp/20149402}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149402/} }
TY - JOUR AU - S. Aniţa TI - Zero-Stabilization for Some Diffusive Models with State Constraints JO - Mathematical modelling of natural phenomena PY - 2014 SP - 6 EP - 19 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149402/ DO - 10.1051/mmnp/20149402 LA - en ID - MMNP_2014_9_4_a1 ER -
S. Aniţa. Zero-Stabilization for Some Diffusive Models with State Constraints. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 6-19. doi : 10.1051/mmnp/20149402. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149402/
[1] Comm. Pure Appl. Math. 2008 491 512
,[2] Appl. Math. Comput. 2013 10231 10244
, ,[3] Nonlin. Anal. Real World Appl. 2009 2026 2035
,[4] Discrete Cont. Dyn. Syst.- B 2009 805 822
, ,[5] V. Barbu. Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston, 1993.
[6] V. Barbu. Partial Differential Equations and Boundary value problems. Kluwer Academic Press, Dordrecht, 1998.
[7] SIAM J. Appl. Math. 1997 327 346
,[8] K. Deimling. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.
[9] Ann. Eugen. 1937 355 369
[10] A.V. Fursikov, O. Yu. Imanuvilov. Controllability of Evolution Equations. Lecture Notes Series 34, RIM Seoul National University, Korea, 1996.
[11] Math. Modelling Nat. Phenom. 1 2006 65 82
, ,[12] Nonlin. Anal. TMA 1986 777 790
[13] W.M. Haddad, V.S. Chellaboina, Q. Hui. Nonnegative and Compartmental Dynamical Systems. Princeton Univ. Press, Princeton, New Jersey, 2010.
[14] Comm. Pure Appl. Anal. 2012 2429 2443
, ,[15] A. Henrot, M. Pierre. Variation et Optimisation de Formes. Une Analyse Géométrique. Springer, Berlin, 2005.
[16] B. Kawohl. Rearrangements and Convexity of Level Sets in PDE. Springer Lecture Notes in Math. 1150, 1985.
[17] J. Klamka. Controllability for partial functional differential equations. Advances in Mathematical Population Dynamics, World Scientific, Ch. 7, 809-814, Houston, 1997.
[18] Bull. Pol. Acad. Sci., Tech. Sci. 2001 633 641
[19] Comm. in PDE 1995 335 357
,[20] J.-L. Lions. Controlabilité Exacte, Stabilisation et Perturbation de Systemes Distribués. RMA 8, Masson, Paris, 1988.
[21] A. Okubo. Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin, 1980.
[22] J.D. Murray. Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edition. Springer-Verlag, New York, 2003.
[23] M.H. Protter, H.F. Weinberger. Maximum Principles in Differential Equations. Springer-Verlag, New York, 1984.
[24] J. Smoller. Shock Waves and Reaction Diffusion Equations. Springer Verlag, Berlin, 1983.
Cité par Sources :