Zero-Stabilization for Some Diffusive Models with State Constraints
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 6-19.

Voir la notice de l'article provenant de la source EDP Sciences

We discuss the zero-controllability and the zero-stabilizability for the nonnegative solutions to some Fisher-like models with nonlocal terms describing the dynamics of biological populations with diffusion, logistic term and migration. A necessary and sufficient condition for the nonnegative zero-stabilizabiity for a linear integro-partial differential equation is obtained in terms of the sign of the principal eigenvalue to a certain non-selfadjoint operator. For a related semilinear problem a necessary condition and a sufficient condition for the local nonnegative zero-stabilizability are also derived in terms of the magnitude of the above mentioned principal eigenvalue. The rate of stabilization corresponding to a simple feedback stabilizing control is dictated by the principal eigenvalue. A large principal eigenvalue leads to a fast stabilization to zero. A necessary condition and a sufficient condition for the stabilization to zero of the predator population in a predator-prey system is also investigated. Finally, a method to approximate the above mentioned principal eigenvalues is indicated.
DOI : 10.1051/mmnp/20149402

S. Aniţa 1, 2

1 Faculty of Mathematics, “Alexandru Ioan Cuza” University of Iaşi, Iaşi 700506, Romania
2 “Octav Mayer” Institute of Mathematics of the Romanian Academy, Iaşi 700506, Romania
@article{MMNP_2014_9_4_a1,
     author = {S. Ani\c{t}a},
     title = {Zero-Stabilization for {Some} {Diffusive} {Models} with {State} {Constraints}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {6--19},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2014},
     doi = {10.1051/mmnp/20149402},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149402/}
}
TY  - JOUR
AU  - S. Aniţa
TI  - Zero-Stabilization for Some Diffusive Models with State Constraints
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 6
EP  - 19
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149402/
DO  - 10.1051/mmnp/20149402
LA  - en
ID  - MMNP_2014_9_4_a1
ER  - 
%0 Journal Article
%A S. Aniţa
%T Zero-Stabilization for Some Diffusive Models with State Constraints
%J Mathematical modelling of natural phenomena
%D 2014
%P 6-19
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149402/
%R 10.1051/mmnp/20149402
%G en
%F MMNP_2014_9_4_a1
S. Aniţa. Zero-Stabilization for Some Diffusive Models with State Constraints. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 4, pp. 6-19. doi : 10.1051/mmnp/20149402. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149402/

[1] B. Ainseba, S. Aniţa Comm. Pure Appl. Math. 2008 491 512

[2] L.-I. Aniţa, S. Aniţa, V. Arnăutu Appl. Math. Comput. 2013 10231 10244

[3] S. Aniţa, V. Capasso Nonlin. Anal. Real World Appl. 2009 2026 2035

[4] S. Aniţa, W. Fitzgibbon, M. Langlais Discrete Cont. Dyn. Syst.- B 2009 805 822

[5] V. Barbu. Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, Boston, 1993.

[6] V. Barbu. Partial Differential Equations and Boundary value problems. Kluwer Academic Press, Dordrecht, 1998.

[7] V. Capasso, R.E. Wilson SIAM J. Appl. Math. 1997 327 346

[8] K. Deimling. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.

[9] R.A. Fisher Ann. Eugen. 1937 355 369

[10] A.V. Fursikov, O. Yu. Imanuvilov. Controllability of Evolution Equations. Lecture Notes Series 34, RIM Seoul National University, Korea, 1996.

[11] S. Genieys, V. Volpert, P. Auger Math. Modelling Nat. Phenom. 1 2006 65 82

[12] J.-M. Ghidaglia Nonlin. Anal. TMA 1986 777 790

[13] W.M. Haddad, V.S. Chellaboina, Q. Hui. Nonnegative and Compartmental Dynamical Systems. Princeton Univ. Press, Princeton, New Jersey, 2010.

[14] A. Henrot, El Haj Laamri, D. Schmitt Comm. Pure Appl. Anal. 2012 2429 2443

[15] A. Henrot, M. Pierre. Variation et Optimisation de Formes. Une Analyse Géométrique. Springer, Berlin, 2005.

[16] B. Kawohl. Rearrangements and Convexity of Level Sets in PDE. Springer Lecture Notes in Math. 1150, 1985.

[17] J. Klamka. Controllability for partial functional differential equations. Advances in Mathematical Population Dynamics, World Scientific, Ch. 7, 809-814, Houston, 1997.

[18] J. Klamka Bull. Pol. Acad. Sci., Tech. Sci. 2001 633 641

[19] G. Lebeau, L. Robbiano Comm. in PDE 1995 335 357

[20] J.-L. Lions. Controlabilité Exacte, Stabilisation et Perturbation de Systemes Distribués. RMA 8, Masson, Paris, 1988.

[21] A. Okubo. Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin, 1980.

[22] J.D. Murray. Mathematical Biology. II. Spatial Models and Biomedical Applications, 3rd edition. Springer-Verlag, New York, 2003.

[23] M.H. Protter, H.F. Weinberger. Maximum Principles in Differential Equations. Springer-Verlag, New York, 1984.

[24] J. Smoller. Shock Waves and Reaction Diffusion Equations. Springer Verlag, Berlin, 1983.

Cité par Sources :