The Evolutionary Dynamics of Aposematism: a Numerical Analysis of Co-Evolution in Finite Populations
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 148-164.

Voir la notice de l'article provenant de la source EDP Sciences

The majority of species are under predatory risk in their natural habitat and targeted by predators as part of the food web. During the evolution of ecosystems, manifold mechanisms have emerged to avoid predation. So called secondary defences, which are used after a predator has initiated prey-catching behaviour, commonly involve the expression of toxins or deterrent substances which are not observable by the predator. Hence, the possession of such secondary defence in many prey species comes with a specific signal of that defence (aposematism). This paper builds on the ideas of existing models of such signalling behaviour, using a model of co-evolution and generalisation of aversive information and introduces a new methodology of numerical analysis for finite populations. This new methodology significantly improves the accessibility of previous models. In finite populations, investigating the co-evolution of defence and signalling requires an understanding of natural selection as well as an assessment of the effects of drift as an additional force acting on stability. The new methodology is able to reproduce the predicted solutions of preceding models and finds additional solutions involving negative correlation between signal strength and the extent of secondary defence. In addition, genetic drift extends the range of stable aposematic solutions through the introduction of a new pseudo-stability and gives new insights into the diversification of aposematic displays.
DOI : 10.1051/mmnp/20149310

J. Teichmann 1 ; M. Broom 1 ; E. Alonso 2

1 Department of Mathematical Science, City University London Northampton Square, London EC1V 0HB
2 Department of Computer Science, City University London Northampton Square, London EC1V 0HB
@article{MMNP_2014_9_3_a9,
     author = {J. Teichmann and M. Broom and E. Alonso},
     title = {The {Evolutionary} {Dynamics} of {Aposematism:} a {Numerical} {Analysis} of {Co-Evolution} in {Finite} {Populations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {148--164},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2014},
     doi = {10.1051/mmnp/20149310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149310/}
}
TY  - JOUR
AU  - J. Teichmann
AU  - M. Broom
AU  - E. Alonso
TI  - The Evolutionary Dynamics of Aposematism: a Numerical Analysis of Co-Evolution in Finite Populations
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 148
EP  - 164
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149310/
DO  - 10.1051/mmnp/20149310
LA  - en
ID  - MMNP_2014_9_3_a9
ER  - 
%0 Journal Article
%A J. Teichmann
%A M. Broom
%A E. Alonso
%T The Evolutionary Dynamics of Aposematism: a Numerical Analysis of Co-Evolution in Finite Populations
%J Mathematical modelling of natural phenomena
%D 2014
%P 148-164
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149310/
%R 10.1051/mmnp/20149310
%G en
%F MMNP_2014_9_3_a9
J. Teichmann; M. Broom; E. Alonso. The Evolutionary Dynamics of Aposematism: a Numerical Analysis of Co-Evolution in Finite Populations. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 148-164. doi : 10.1051/mmnp/20149310. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149310/

[1] J. D. Blount, M. P. Speed, G. D. Ruxton, P. A. Stephens Proceedings of the Royal Society B: Biological Sciences 2009 871 877

[2] M. Broom, G. D. Ruxton, M. P. Speed. Evolutionarily stable investment in anti-predatory defences and aposematic signalling. Mathematical Modeling of Biological Systems, volume 2 of Modeling and Simulation in Science, Engineering and Technology, (2008), 37–48.

[3] M. Broom, M. Speed, G. Ruxton Journal of Theoretical Biology 2006 32 34

[4] F. Christiansen American Naturalist 1991 37 50

[5] F. Cortesi, K. L. Cheney Journal of Evolutionary Biology 2010 1509 1518

[6] H. Ellegren Evolution 2009 301 305

[7] J. Endler Biological Journal of the Linnean Society 1981 25 31

[8] J. Endler Biological Journal of the Linnean Society 1984 187 231

[9] G. Gamberale, B. Tullberg Proceedings of the Royal Society of London. Series B: Biological Sciences 1996 1329 1334

[10] G. Gamberale-Stille, T. Guilford Proceedings of the Royal Society B: Biological Sciences 2004 2621 2625

[11] J. Keehn British Journal of Psychology 1959 125 135

[12] T. J. Lee, N. M. Marples, M. P. Speed Animal Behaviour 2010 63 74

[13] T. J. Lee, M. P. Speed, P. A. Stephens American Society of Naturalists 2011 E1 E9

[14] O. Leimar, M. Enquist, B. Sillen-Tullberg American Naturalist 1986 469 490

[15] L. Lindström, R. Alatalo, A. Lyytinen, J. Mappes Proceedings of the National Academy of Sciences 2001 9181 9184

[16] C. G. Longson, J. M. P. Joss Functional Ecology 2006 731 735

[17] J. Mappes, N. Marples, J. A. Endler Trends in Ecology and Evolution 2005 598 603

[18] N. M. Marples, D. J. Kelly, R. J. Thomas Evolution 2005 933 940

[19] J. Masel Current Biology 2011 R837 R838

[20] S. Merilaita, J. Tuomi, V. Jormalainen Biological Journal of the Linnean Society 1999 151 161

[21] P. Moran. The statistical processes of evolutionary theory. Clarendon Press, Oxford University Press., 1962.

[22] M. Nowak. Evolutionary dynamics: exploring the equations of life. Belknap Press, 2006.

[23] S. Poulton. The colours of animals: their meaning and use, especially considered in the case of insects. D. Appleton and company, 1890.

[24] G. Ruxton, T. Sherratt, M. Speed. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, 2004.

[25] G. Ruxton, M. Speed, M. Broom Evolutionary Ecology 2009 491 501

[26] R. S. Jones, S. C. Davis, M. P. Speed Ethology 2013 52 57

[27] T. Sherratt Proceedings of the Royal Society of London. Series B: Biological Sciences 2002 741 746

[28] M. Speed, G. Ruxton. Aposematism: what should our starting point be? Proceedings of the Royal Society B: Biological Sciences, 272 (2005), 431–438.

[29] M. Speed, G. Ruxton Evolution 2007 623 635

[30] M. P. Speed, G. D. Ruxton, J. D. Blount, P. A. Stephens Ecology Letters 2010 744 753

[31] K. Summers, M. Clough Proceedings of the National Academy of Sciences 2001 6227 6232

[32] C. Taylor, D. Fudenberg, A. Sasaki, M. A. Nowak Bulletin of mathematical biology 2004 1621 1644

[33] B. Thomas Journal of Mathematical Biology 1985 105 115

[34] J. Weibull. Evolutionary game theory. MIT press, 1997.

[35] M. Whitlock Evolution 2000 1855 1861

[36] Y. Willi, P. Griffin, J. Van Buskirk Heredity 2012 296 302

[37] K. Williams, K. Smith, F. Stephen Ecology 1993 1143 1152

[38] S. Yachi, M. Higashi Nature 1998 882 884

Cité par Sources :