Metapopulation Dynamics and the Evolution of Sperm Parasitism
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 124-137.

Voir la notice de l'article provenant de la source EDP Sciences

Amazon molly (Poecilia formosa) females reproduce asexually, but they need sperm to initiate the process. Such gynogenetic reproduction can be called sperm parasitism since the DNA in the sperm is not used. Since all offspring of asexually reproducing females are females, they can locally outcompete sexually reproducing ones, but their persistence is threatened by the lack of males. Therefore, the existence of Amazon mollies is puzzling. A metapopulation structure has been suggested to enable the coexistence of gynogenetic and sexual species. Previously only Levins-type metapopulation models have been used to investigate this question, but they are not defined on the individual level. Therefore we investigate the evolution of sperm parasitism in a structured metapopulation model, which incorporates both realistic local population dynamics and individual-level dispersal. If the reproduction strategy is freely evolving in a large well-mixed population or in the structured metapopulation model, strong discrimination of asexually reproducing females by males results in evolution to full sexuality, whereas mild discrimination leads to too small probability of sexual reproduction, so that the lack of males causes the extinction of the evolving population, resulting in evolutionary suicide. This classification remains the same also when both sexual reproduction and dispersal are freely evolving. Sexual and asexual behaviour can be observed at the same time in this model in the presence of a trade-off between the reproduction and dispersal traits. However, we do not observe disruptive selection resulting in the evolutionarily stable coexistence of fully sexual and fully asexual females. Instead, the presence of sexual and asexual behaviour is due to females with a mixed reproduction trait.
DOI : 10.1051/mmnp/20149308

K. Parvinen 1, 2

1 Department of Mathematics and Statistics, FI-20014 University of Turku
2 Evolution and Ecology Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
@article{MMNP_2014_9_3_a7,
     author = {K. Parvinen},
     title = {Metapopulation {Dynamics} and the {Evolution} of {Sperm} {Parasitism}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {124--137},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2014},
     doi = {10.1051/mmnp/20149308},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149308/}
}
TY  - JOUR
AU  - K. Parvinen
TI  - Metapopulation Dynamics and the Evolution of Sperm Parasitism
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 124
EP  - 137
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149308/
DO  - 10.1051/mmnp/20149308
LA  - en
ID  - MMNP_2014_9_3_a7
ER  - 
%0 Journal Article
%A K. Parvinen
%T Metapopulation Dynamics and the Evolution of Sperm Parasitism
%J Mathematical modelling of natural phenomena
%D 2014
%P 124-137
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149308/
%R 10.1051/mmnp/20149308
%G en
%F MMNP_2014_9_3_a7
K. Parvinen. Metapopulation Dynamics and the Evolution of Sperm Parasitism. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 124-137. doi : 10.1051/mmnp/20149308. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149308/

[1] R. D. Alexander. Darwinism and human affairs. Seattle, University of Washington Press, 1979.

[2] R. D. Alexander. The biology of moral systems. New York, Aldine de Gruyter, 1987.

[3] L. W. Beukeboom, R. C. Vrijenhoek J. Evol. Biol 1998 755 782

[4] Å. Brännström, U. Dieckmann Proc. R. Soc. London B 2005 1609 1616

[5] Å. Brännström, D. J. T. Sumpter Proc. R. Soc. London B 2005 2065 2072

[6] F. B. Christiansen Am. Nat. 1991 37 50

[7] M. Doebeli, C. Hauert, T. Killingback Science 2004 859 862

[8] I. Eshel J. Theor. Biol. 1983 99 111

[9] H. Eskola, S. A. H. Geritz Bull. Math. Biol. 2007 329 346

[10] H. Eskola, K. Parvinen Theor. Popul. Biol. 2007 41 51

[11] H. Eskola, K. Parvinen Bull. Math. Biol. 2010 184 207

[12] R. Ferrière. Adaptive responses to environmental threats: evolutionary suicide, insurance, and rescue. Options Spring 2000, IIASA, Laxenburg, Austria, 12–16, 2000.

[13] J. A. Fletcher, M. Doebeli Proc. R. Soc. London B 2009 13 19

[14] S. A. H. Geritz, É. Kisdi, G. Meszéna, J. A. J. Metz Evol. Ecol. 1998 35 57

[15] S. A. H. Geritz, J. A. J. Metz, É. Kisdi, G. Meszéna Phys. Rev. Lett. 1997 2024 2027

[16] M. Gyllenberg, J. A. J. Metz J. Math. Biol. 2001 545 560

[17] M. Gyllenberg, K. Parvinen Bull. Math. Biol. 2001 981 993

[18] M. Gyllenberg, K. Parvinen, U. Dieckmann J. Math. Biol. 2002 79 105

[19] W. D. Hamilton J. Theor. Biol 1964 1 16

[20] W. D. Hamilton J. Theor. Biol 1964 17 52

[21] K. Heubel, D. Rankin, H. Kokko Oikos 2009 513 520

[22] H. Kokko, K. Heubel, D. Rankin Proc. R. Soc. London B 2008 817 825

[23] H. Kokko, K. U. Heubel Oikos 2011 641 656

[24] R. Levins Bull. Entomol. Soc. Am. 1969 237 240

[25] R. Levins. Extinction. In M. Gerstenhaber, editor, Some Mathematical Problems in Biology. American Mathematical Society, Providence, RI, (1970), 77–107.

[26] H. Matsuda J. Theor. Biol 1985 351 366

[27] J. Maynard Smith. Amer. Sci. 1976 41 45

[28] J. A. Mee, F. Noddin, J. R. Hanisch, W. M. Tonn, C. A. Paszkowski Oikos 2013 998 1008

[29] J. A. Mee, S. P. Otto Evolution 2010 2808 2819

[30] J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction. In S. J. van Strien and S. M. Verduyn Lunel, editors, Stochastic and Spatial Structures of Dynamical Systems. North-Holland, Amsterdam, (1996), 183–231.

[31] J. A. J. Metz, M. Gyllenberg Proc. R. Soc. London B 2001 499 508

[32] J. A. J. Metz, R. M. Nisbet, S. A. H. Geritz Trends Ecol. Evol. 1992 198 202

[33] W. S. Moore Evolution 1976 564 578

[34] M. A. Nowak, K. Sigmund J. Theor. Biol 1998 561 574

[35] M. A. Nowak, K. Sigmund Nature 1998 573 577

[36] M. A. Nowak, K. Sigmund Nature 2005 1291 1298

[37] H. Ohtsuki, Y. Iwasa J. Theor. Biol. 2006 435 444

[38] K. Parvinen Acta Biotheoretica 2005 241 264

[39] K. Parvinen Bull. Math. Biol. 2006 655 678

[40] K. Parvinen Evol. Ecol. Res. 2007 619 633

[41] K. Parvinen Bull. Math. Biol. 2011 2605 2626

[42] K. Parvinen, U. Dieckmann J. Theor. Biol 2013 1 9

[43] K. Parvinen, U. Dieckmann. Evolutionary suicide. In U. Dieckmann and J. A. J. Metz, editors, Elements of Adaptive Dynamics. Cambridge University Press, (in press).

[44] K. Parvinen, U. Dieckmann, M. Gyllenberg, J. A. J. Metz J. Evol. Biol 2003 143 153

[45] K. Parvinen, J. A. J. Metz Theor. Popul. Biol. 2008 517 528

[46] C. Rueffler, M. Egas, J. A. J. Metz Am. Nat. 2006 E148 E162

[47] D. Schley, C. P. Doncaster, T. Sluckin J. Theor. Biol 2004 559 572

[48] R. Sugden. The Evolution of Rights, Co-operation and Welfare.Oxford: Blackwell, 1986.

[49] D. J. T. Sumpter, D. S. Broomhead Proc. R. Soc. London B 2001 925 932

[50] R. Trivers Q Rev Biol 1971 35 57

[51] P. H. Van Tienderen, G. De Jong J. Theor. Biol. 1986 69 81

[52] R. C. Vrijenhoek Am. Zool. 1979 787 797

Cité par Sources :