Oscillations and DNA Repair in a Spatio-Temporal Model of the p53 Signalling Pathway
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 107-123.

Voir la notice de l'article provenant de la source EDP Sciences

In mammalian cells, the p53 pathway regulates the response to a variety of stresses, including oncogene activation, heat and cold shock, and DNA damage. Here we explore a mathematical model of this pathway, composed of a system of partial differential equations. In our model, the p53 pathway is activated by a DNA-compromising event of short duration. As is typical for mathematical models of the p53 pathway, our model contains a negative feedback loop representing interactions between the p53 and Mdm2 proteins. A novel feature of our model is that we combine a spatio-temporal approach with the appearance and repair of DNA damage. We investigate the behaviour of our model through numerical simulations. By ignoring the possibility of DNA repair, we first explore the scenario in which the cell has a very inefficient DNA repair mechanism. We find that spatio-temporal oscillations in p53 and Mdm2 may occur, consistent with experimental data. We then allow p53 to be directly involved in repairing DNA damage, since experimental evidence suggests this can happen. We find that oscillations in p53 and Mdm2 can still occur, but their amplitude damps down quickly as the DNA damage is repaired. Finally, we find that a minor change to the location of the DNA damage can notably change the spatial distribution of p53 within the nucleus. We discuss the biological implications of our results.
DOI : 10.1051/mmnp/20149307

A. J. Terry 1

1 Division of Mathematics, University of Dundee, Dundee, DD1 4HN, UK.
@article{MMNP_2014_9_3_a6,
     author = {A. J. Terry},
     title = {Oscillations and {DNA} {Repair} in a {Spatio-Temporal} {Model} of the p53 {Signalling} {Pathway}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {107--123},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2014},
     doi = {10.1051/mmnp/20149307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149307/}
}
TY  - JOUR
AU  - A. J. Terry
TI  - Oscillations and DNA Repair in a Spatio-Temporal Model of the p53 Signalling Pathway
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 107
EP  - 123
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149307/
DO  - 10.1051/mmnp/20149307
LA  - en
ID  - MMNP_2014_9_3_a6
ER  - 
%0 Journal Article
%A A. J. Terry
%T Oscillations and DNA Repair in a Spatio-Temporal Model of the p53 Signalling Pathway
%J Mathematical modelling of natural phenomena
%D 2014
%P 107-123
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149307/
%R 10.1051/mmnp/20149307
%G en
%F MMNP_2014_9_3_a6
A. J. Terry. Oscillations and DNA Repair in a Spatio-Temporal Model of the p53 Signalling Pathway. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 107-123. doi : 10.1051/mmnp/20149307. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149307/

[1] S.S. Apte, M.G. Mattei, B.R. Olsen Genomics 1995 592 594

[2] C.J. Bakkenist, M.B. Kastan Nature 2003 499 506

[3] E. Batchelor, C.S. Mock, I. Bhan, A. Loewer, G. Lahav Molecular Cell 2008 277 289

[4] E. Batchelor, A. Loewer, G. Lahav Nature Reviews Cancer 2009 371 377

[5] C. Blattner, T. Hay, D.W. Meek, D.P. Lane Molecular and Cellular Biology 2002 6170 6182

[6] A.M. Bode, Z. Dong Nat. Rev. Cancer 2004 793 805

[7] A. Cangiani, R. Natalini J. Theor. Biol. 2010 614 625

[8] A. Carracedo, A. Alimonti, P.P. Pandolfi Cancer Research 2011 629 633

[9] C.H. Chung, K. Ely, L. Mcgavran, M. Varella-Garcia, J. Parker, N. Parker, C. Jarrett, J. Carter, B.A. Murphy, J. Netterville, B.B. Burkey, R. Sinard, A. Cmelak, S. Levy, W.G. Yarbrough, R.J. Slebos, F.R. Hirsch J. Clin. Oncol. 2006 4170 4176

[10] A. Ciliberto, B. Novak, J. Tyson Cell Cycle 2005 488 493

[11] S.E. Coupland, N. Bechrakis, A. Schuler, I. Anagnostopoulos, M. Hummel, N. Bornfeld, H. Stein Br. J. Ophthalmol. 1998 961 970

[12] L. Dimitrio, J. Clairambault, R. Natalini J. Theor. Biol. 2012 9 24

[13] N. Geva-Zatorsky, N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel, T. Yarnitzky, Y. Liron, P. Polak, G. Lahav, U. Alon Mol. Sys. Biol. 2006 0033

[14] P. Giannakakou, D.L. Sackett, Y. Ward, K.R. Webster, M.V. Blagosklonny, T. Fojo Nat. Cell Biol. 2000 709 717

[15] P. Hikisz, Z.M. Kilianska Cell. Mol. Biol. Lett. 2012 646 669

[16] K.K. Khanna, M.F. Lavin, S.P. Jackson, T.D. Mulhern Cell Death Diff. 2001 1052 1065

[17] G. Lahav, N. Rosenfield, A. Sigal, N. Geva-Zatorsky, A.J. Levine, M.B. Elowitz, U. Alon Nat. Gen. 2004 147 150

[18] A. Loewer, E. Batchelor, G. Gaglia, G. Lahav Cell 2010 89 100

[19] L. Ma, J. Wagner, J.J. Rice, W. Hu, A.J. Levine, G.A. Stolovitzky Proc. Natl. Acad. Sci. USA 2005 14266 14271

[20] J.J. Manfredi Genes & Development 2010 1580 1589

[21] J.C. Marine Cell Death Diff. 2010 191 192

[22] L.D. Mayo, D.B. Donner Proc. Natl. Acad. Sci. USA 2001 11598 11603

[23] G.I. Mihalas, M. Neamtu, D. Opris, R.F. Horhat Chaos, Solitons and Fractals 2006 936 945

[24] N. Monk Curr. Biol. 2003 1409 1413

[25] C.C. Morton. Cancer sentry flashes two-tiered warning, http://hms.harvard.edu/news/cancer-sentry-flashes-two-tiered-warning-9-3-10, 2010.

[26] H. Offer, M. Milyavsky, N. Erez, D. Matas, I. Zurer, C.C. Harris, V. Rotter Oncogene 2001 581 589

[27] Y. Ogawara, S. Kishishita, T. Obata, Y. Isazawa, T. Suzuki, K. Tanaka, N. Masuyama, Y. Gotoh J. Biol. Chem. 2002 21843 21850

[28] D.A. Ouattara, W. Abou-Jaoude, M. Kaufman J. Theor. Biol. 2010 1177 1189

[29] C.J. Proctor, D.A. Gray BMC Systems Biology 2008 1 20

[30] T. Pu, X.P. Zhang, F. Liu, W. Wang Biophysical Journal 2010 1696 1705

[31] K. Puszynski, B. Hat, T. Lipniacki J. Theor. Biol. 2008 452 465

[32] K. Puszynski, R. Bertolusso, T. Lipniacki IET Sys. Biol. 2009 356 367

[33] P. Ragazzini, G. Gamberi, M.S. Benassi, C. Orlando, R. Sestini, C. Ferrari, L. Molendini, M.R. Sollazzo, M. Merli, G. Magagnoli, F. Bertoni, T. Bohling, M. Pazzagli, P. Picci Cancer Detection and Prevention 1999 129 136

[34] D.R. Schrider, M.W. Hahn Proc. Roy. Soc. B 2010 3213 3221

[35] M.L. Smith, Y.R. Seo Mutagenesis 2002 149 156

[36] V. Stambolic, D. Macpherson, D. Sas, Y. Lin, B. Snow, Y. Jang, S. Benchimol, T.W. Mak Mol. Cell 2001 317 325

[37] A.H. Stegh Expert Opinion on Therapeutic Targets 2012 67 83

[38] J.M. Stommel, G.M. Wahl Cell Cycle 2005 411 417

[39] M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A.J. Chaplain J. Theor. Biol. 2011 15 31

[40] M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A.J. Chaplain B. Math. Biol. 2012 1531 1579

[41] A.J. Terry, M. Sturrock, J.K. Dale, M. Maroto, M.A.J. Chaplain PLoS ONE 2011 e16980

[42] A.J. Terry, M.A.J. Chaplain J. Theor. Biol. 2011 7 26

[43] R. Weinberg. The Biology of Cancer. Garland Science: Taylor Francis Group, 2007.

[44] D.P. Xirodimas, C.W. Stephen, D.P. Lane Experimental Cell Research 2001 66 77

[45] T. Zhang, P. Brazhnik, J.J. Tyson Cell Cycle 2007 85 94

Cité par Sources :