Replicator Equations and Models of Biological Populations and Communities
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 68-95.

Voir la notice de l'article provenant de la source EDP Sciences

An overview of a general approach for mathematical modeling of evolving heterogeneous populations using a wide class of selection systems and replicator equations (RE) is presented. The method allows visualizing evolutionary trajectories of evolving heterogeneous populations over time, while still enabling use of analytical tools of bifurcation theory. The developed theory involves introducing escort systems of auxiliary “keystone" variables, which reduce complex multi-dimensional inhomogeneous models to low dimensional systems of ODEs that in many cases can be investigated analytically. In addition to a comprehensive theoretical framework, a set of examples of the method’s applicability to questions ranging from preventing the tragedy of the commons to cancer therapy is presented.
DOI : 10.1051/mmnp/20149305

G. P. Karev 1 ; I. G. Kareva 2

1 National Center for Biotechnology Information, National Institute of Health, Bldg. 38A, Rm. 5N511N, 8600 Rockville Pike, Bethesda, MD 20894, USA
2 Newman-Lakka Institute for Personalized Cancer Care, Floating Hospital for Children, Tufts Medical Center, 75 Kneeland St., Boston, MA, 02111
@article{MMNP_2014_9_3_a4,
     author = {G. P. Karev and I. G. Kareva},
     title = {Replicator {Equations} and {Models} of {Biological} {Populations} and {Communities}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {68--95},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2014},
     doi = {10.1051/mmnp/20149305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149305/}
}
TY  - JOUR
AU  - G. P. Karev
AU  - I. G. Kareva
TI  - Replicator Equations and Models of Biological Populations and Communities
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 68
EP  - 95
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149305/
DO  - 10.1051/mmnp/20149305
LA  - en
ID  - MMNP_2014_9_3_a4
ER  - 
%0 Journal Article
%A G. P. Karev
%A I. G. Kareva
%T Replicator Equations and Models of Biological Populations and Communities
%J Mathematical modelling of natural phenomena
%D 2014
%P 68-95
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149305/
%R 10.1051/mmnp/20149305
%G en
%F MMNP_2014_9_3_a4
G. P. Karev; I. G. Kareva. Replicator Equations and Models of Biological Populations and Communities. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 68-95. doi : 10.1051/mmnp/20149305. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149305/

[1] R. Alexandrova Exper. Path. & Paras. 2001 57 67

[2] A. D. Bazykin. Nonlinear dynamics of interacting populations. World Scientific, 1998.

[3] F. Berezovskaya, G. Karev, T. W. Snell Ecol. Complex. 2005 395 409

[4] F. Brauer, C. Castillo-Chavez. Mathematical models in population biology and epidemiology. Springer, 2011.

[5] A. Cintron-Arias, F. Sanchez, X. Wang, C. Castillo-Chavez, D. M. Gorman, P. J. Gruenewald. The role of nonlinear relapse on contagion amongst drinking communities. In: Chowell, G., Hayman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (Eds.), Mathematical and statistical estimation approaches in epidemiology, Springer Netherlands, (2009), 343-360.

[6] T. Dietz, E. Ostrom, P. C. Stern Science 2003 1907 1912

[7] W. Feller. An introduction to probability theory and its applications. Vol. 2. John Wiley Sons, 2008.

[8] R. Fisher. The genetical theory of natural selection: a complete variorum edition. Oxford University Press, 1999.

[9] H. Von Foerster, P. M. Mora, L. W. Amiot Science 1960 1291 1295

[10] R. A. Gatenby, T. L. Vincent Mol. Can. Therap. 2003 919 927

[11] R. A. Gatenby, R. J. Gillies Nature Rev. Can. 2004 891 899

[12] G. Gause. The struggle for existence. Courier Dover Publications, 2003.

[13] A. N. Gorban. Equilibrium encircling. Equations of chemical kinetics and their thermodynamic analysis, Nauka, Novosibirsk, 1984.

[14] A. N. Gorban Math. Mod. Nat. Phen. 2007 1 45

[15] J. Hofbauer, K. Sigmund. Evolutionary games and population dynamics. Cambridge University Press, 1998.

[16] Hardin Garrett Science 1968 1243 1248

[17] G. H. Heppner, F. R. Miller Int. Rev. Cytol. 1997 1 56

[18] F.B. Hu, W. C. Willett, T. Li, M. J. Stampfer, G. A. Colditz, J. E. Manson N. Eng. J. Med. 2004 2694 2703

[19] S. Kapitza Physics-Uspekhi 1996 57 71

[20] S. Kapitza. Global Population Blow-Up and After: The Demographic Revolution and Information Society. Global Marshall Plan Initiative, 2006.

[21] G. P. Karev Ecol. Mod. 2003 23 37

[22] G. P. Karev J. Biol. Sys. 2005 83 104

[23] G. P. Karev, A.R. Burk. Analytical models of forest dynamics in stable environment. In: New developments in ecology research. Nova Science Publishers, New York, USA (2006), 29-97.

[24] G. P. Karev, A. S. Novozhilov, E. V. Koonin Biol. Dir. 2006 19

[25] G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya Ecol. Mod. 2008 80 85

[26] G. P. Karev Journal of Difference Equations and Applications 2008 31 58

[27] G. P. Karev J. Math. Bio. 2010 107 129

[28] G. P. Karev Entropy 2010 1673 1695

[29] G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya Math. Med. & Biol. 2011 89 110

[30] I. Kareva PloS one 2011

[31] I. Kareva, F. Berezovskaya, C. Castillo-Chavez Math. Biosci. 2012 114 123

[32] I. Kareva, F. Berezovskaya, C. Castillo-Chavez J. Biol. Dyn. 2010 315 327

[33] I. Kareva, B. Morin, G. Karev Bull. Math. Biol. 2013 565 588

[34] G. F. Khilmi. Foundations of the Physics of the Biosphere, 1967.

[35] N. Komarova Curr. Opin. Oncol. 2005 39 43

[36] D.C. Krakauer, K. M. Page, D. H. Erwin Am. Nat. 2009 26 40

[37] Y. Kuang, J. D. Nagy, J. J. Elser Disc. Cont. Dyn. Sys. Ser. B 2004 221 240

[38] Y.A. Kuznetsov. Elements of applied bifurcation theory, Springer-Verlag, New York, 1995.

[39] J. Liebig. Chemistry applications to farming and physiology, 1876.

[40] F. Mccormick Canc. Biol. & Ther. 2003 156 159

[41] A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin, G. P. Karev Biol. Dir. 2006 18

[42] A. S. Novozhilov Math. Biosci. 2008 177 185

[43] A. S. Novozhilov Math. Mod. Nat. Phen. 2012 147 167

[44] A. S. Novozhilov J. Comp. Sys. Sci. Int. 2004 378 382

[45] A. S. Novozhilov Dyn. Cont., Disc. & Impul. Sys., Ser. A, Math. Anal. 2009 136 140

[46] M. Nowak, R. M. May. Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology. Oxford University Press, 2000.

[47] E. Ostrom Ann. Rev. Pol. Sci. 1999 493 535

[48] I.A. Poletaev Problems of Cibernetics 1966 171 190

[49] T.W. Snell, M. Serra Hydrobio. 1998 29 35

[50] A. Tsoularis, J. Wallace Math. Biosci. 2002 21 55

[51] M. E. Wright, S. C. Chang, A. Schatzkin, D. Albanes, V. Kipnis, T. Mouw, P. Hurwitz, A. Hollenbeck, M. F. Leitzmann Cancer 2007 675 684

[52] V.V. Zagreev. Reference Book on All-Union Forest Growth Tables. Kolos, Moscow, 1992.

[53] K. B. Zeldovich, P. Chen, B. E. Shakhnovich, E. I. Shakhnovich PLoS Comp. Biol. 2007 e139

Cité par Sources :