Replicator Equations and Space
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 47-67.

Voir la notice de l'article provenant de la source EDP Sciences

A reaction–diffusion replicator equation is studied. A novel method to apply the principle of global regulation is used to write down a model with explicit spatial structure. Properties of stationary solutions together with their stability are analyzed analytically, and relationships between stability of the rest points of the non-distributed replicator equation and the distributed system are shown. In particular, we present the conditions on the diffusion coefficients under which the non-distributed replicator equation can be used to describe the number and stability of the stationary solutions to the distributed system. A numerical example is given, which shows that the suggested modeling framework promotes the system’s persistence, i.e., a scenario is possible when in the spatially explicit system all the interacting species survive whereas some of them go extinct in the non-distributed one.
DOI : 10.1051/mmnp/20149304

A. S. Bratus 1, 2 ; V. P. Posvyanskii 2 ; A. S. Novozhilov 3

1 Faculty of Computational Mathematics and Cybernetics Lomonosov Moscow State University, Moscow 119992, Russia
2 Applied Mathematics–1, Moscow State University of Railway Engineering, Moscow 127994, Russia
3 Department of Mathematics, North Dakota State University, Fargo, ND 58108, USA
@article{MMNP_2014_9_3_a3,
     author = {A. S. Bratus and V. P. Posvyanskii and A. S. Novozhilov},
     title = {Replicator {Equations} and {Space}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {47--67},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2014},
     doi = {10.1051/mmnp/20149304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149304/}
}
TY  - JOUR
AU  - A. S. Bratus
AU  - V. P. Posvyanskii
AU  - A. S. Novozhilov
TI  - Replicator Equations and Space
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 47
EP  - 67
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149304/
DO  - 10.1051/mmnp/20149304
LA  - en
ID  - MMNP_2014_9_3_a3
ER  - 
%0 Journal Article
%A A. S. Bratus
%A V. P. Posvyanskii
%A A. S. Novozhilov
%T Replicator Equations and Space
%J Mathematical modelling of natural phenomena
%D 2014
%P 47-67
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149304/
%R 10.1051/mmnp/20149304
%G en
%F MMNP_2014_9_3_a3
A. S. Bratus; V. P. Posvyanskii; A. S. Novozhilov. Replicator Equations and Space. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 47-67. doi : 10.1051/mmnp/20149304. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149304/

[1] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik. Theory of fluid flows through natural rocks. Kluwer Academic Publishers, 1989.

[2] A. S. Bratus, C.-K. Hu, M. V. Safro, A. S. Novozhilov. On diffusive stability of Eigen’s quasispecies model. Journal of Dynamical and Control Systems. arXiv:1212.1488 (2013).

[3] A. S. Bratus, A. S. Novozhilov, A. P. Platonov. Dynamical systems and models in biology. Fizmatlit, 2010. in Russian.

[4] A. S. Bratus, V. P. Posvyanskii Diff. Eq. 2006 1762 1774

[5] A. S. Bratus, V. P. Posvyanskii, A. S. Novozhilov Nonl. Anal. Real World Appl. 2010 1897 1917

[6] A. S. Bratus, V. P. Posvyanskii, A. S. Novozhilov Math. Bios. Eng. 2011 659 676

[7] R. S. Cantrell, C. Cosner. Spatial ecology via reaction-diffusion equations. Wiley, 2003.

[8] R. Cressman, A. T. Dash J. Theor. Biol. 1987 393 406

[9] R. Cressman, G. T. Vickers J. Theor. Biol. 1997 359 369

[10] U. Dieckmann, R. Law, J. A. J. Metz. The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, 2000.

[11] M. Eigen, J. Mccascill, P. Schuster Adv. Chem. Phys. 1989 149 263

[12] L. C. Evans. Partial Differential Equations. American Mathematical Society, 2nd edition, 2010.

[13] R. Ferriere, R. E. Michod. Wave patterns in spatial games and the evolution of cooperation. In U. Dieckmann, R. Law, and J. A. J. Metz, editors, The Geometry of Ecological Interactions: Simplifying Spatial Complexity, Cambridge University Press, (2000), 318–339.

[14] K. P. Hadeler R. Moun. J. Math. 1981 39 45

[15] J. Hofbauer, K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, 1998.

[16] J. Hofbauer, K. Sigmund Bull. Am. Math. Soc. 2003 479 519

[17] V. C. L. Hutson, G. T. Vickers J. Math. Biol. 1992 457 471

[18] V. C. L. Hutson, G. T. Vickers Phil. Trans. Royal Soc. Ser. B: Biol. Sc. 1995 393 404

[19] G. P. Karev, A. S. Novozhilov, F. S. Berezovskaya Math. Med. Biol. 2011 89 110

[20] P. Knabner, L. Angerman. Numerical methods for elliptic and parabolic partial differential equations, vol. 44. Springer, 2003.

[21] S. G. Mikhlin. Variational Methods in Mathematical Physics. Pergamon Press, 1964.

[22] A. S. Novozhilov, V. P. Posvyanskii, A. S. Bratus Russ. J. Num. Anal. Math. Mod. 2012 555 564

[23] M. A. Nowak. Evolutionary dynamics: exploring the equations of life. Harvard University Press, 2006.

[24] K. Rektorys. Variational methods in mathematics, science and engineering. Springer, 1980.

[25] N. Vaidya, M. L. Manapat, I. A. Chen, R. Xulvi-Brunet, E. J. Hayden, N. Lehman Nature 2012 72 77

[26] G. T. Vickers J. Theor. Biol. 1989 129 35

[27] G. T. Vickers J. Theor. Biol. 1991 329 337

[28] G. T. Vickers, V. C. L. Hutson, C. J. Budd J. Math. Biol. 1993 411 430

[29] E. D. Weinberger Bull. Math. Biol. 1991 623 638

Cité par Sources :