Voir la notice de l'article provenant de la source EDP Sciences
J. Z. Farkas 1 ; A. Y. Morozov 2, 3
@article{MMNP_2014_9_3_a2, author = {J. Z. Farkas and A. Y. Morozov}, title = {Modelling {Effects} of {Rapid} {Evolution} on {Persistence} and {Stability} in {Structured} {Predator-Prey} {Systems}}, journal = {Mathematical modelling of natural phenomena}, pages = {26--46}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2014}, doi = {10.1051/mmnp/20149303}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149303/} }
TY - JOUR AU - J. Z. Farkas AU - A. Y. Morozov TI - Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems JO - Mathematical modelling of natural phenomena PY - 2014 SP - 26 EP - 46 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149303/ DO - 10.1051/mmnp/20149303 LA - en ID - MMNP_2014_9_3_a2 ER -
%0 Journal Article %A J. Z. Farkas %A A. Y. Morozov %T Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems %J Mathematical modelling of natural phenomena %D 2014 %P 26-46 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149303/ %R 10.1051/mmnp/20149303 %G en %F MMNP_2014_9_3_a2
J. Z. Farkas; A. Y. Morozov. Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 26-46. doi : 10.1051/mmnp/20149303. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149303/
[1] Ecology 1996 1125 1133
,[2] Comput. Math. Appl. 2013 1685 1694
,[3] L. J. S. Allen. An introduction to mathematical biology. Pearson Prentice Hall, Upper Saddle River, NJ, 2007.
[4] Contemp. Math. 2007 57 68
,[5] C. R. Math. Acad. Sci. Paris 2012 761 766
, , , , , ,[6] À. Calsina, J. Z. Farkas. Positive steady states of evolution equations with finite dimensional nonlinearities. to appear in SIAM J. Math. Anal.
[7] J. Evol. Equ. 2012 495 512
,[8] J. Math. Anal. Appl. 2013 386 395
,[9] J.M. Cushing. An introduction to structured population dynamics. SIAM, Philadelphia, PA, 1998.
[10] Th. Pop. Biol. 2005 257 271
, , ,[11] Mar. Ecol. Prog. Ser. 2002 139 150
, , ,[12] Ecol. Lett. 2007 44 53
,[13] Ecol. Lett. 2011 603 614
, ,[14] Math. Model. Nat. Phenom. 2010 94 114
, ,[15] Appl. Anal. 2007 1087 1103
,[16] Interface Focus 2013 20130036
,[17] Deep-Sea Res. II Top Stud., Oceanog. 2003 2847 2875
, , , ,[18] Math. Biosci. Eng. 2010 37 49
[19] Int. Rev. Hydrobiol. 2008 578 592
,[20] Phil. Trans. R. Soc. B. 2009 1593 1605
, ,[21] J. Math. Biol. 2007 541 573
,[22] Phil. Trans. R. Soc. B 2009 1579 1591
, , , , ,[23] D. Henry. Geometric theory of semilinear parabolic equations. Springer, Berlin-New York, 1981.
[24] Can. Entomol. 1959 293 320
[25] T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg, 1995.
[26] Comm. Partial Differential Equations 2011 1071 1098
, ,[27] M. Kot. Elements of Mathematical Ecology, Cambridge University Press, 2001.
[28] M. A. Krasnoselskii. Positive solutions of operator equations. P. Noordhoff Ltd., Groningen, 1964.
[29] SIAM J. Appl. Math. 1970 607 628
[30] Ecol. Lett. 2011 690 701
[31] Math. Methods Appl. Sci. 2013 323 335
,[32] A. Yu. Morozov. Incorporating complex foraging of zooplankton in models: role of micro and mesoscale processes in macroscale patterns. In Dispersal, individual movement and spatial ecology: a mathematical perspective (eds M Lewis, P Maini S Petrovskii). New York, NY: Springer, (2011), 1–10.
[33] Math. Med. Biol. 2011 185 215
, , ,[34] PLoS ONE 2013
, ,[35] Amer. Nat. 1975 289 298
,[36] L. Perko. Differential Equations and Dynamical Systems. Springer, New York, 2001
[37] Amer. Nat. 2010 278 289
,[38] Q. I. Rahman, G. Schmeisser. Analytic theory of polynomials. London Mathematical Society Monographs. New Series 26. Oxford: Oxford University Press, 2002.
[39] Mol. Ecol. 2008 97 107
, ,[40] Science 1971 385 387
[41] Am. Nat. 1963 209 223
,[42] H. H. Schäfer. Banach lattices and positive operators. Springer-Verlag, Berlin, 1974.
[43] Trends Ecol. Evol. 1998 329 332
[44] Yu. V. Tyutyunov, O. V. Kovalev, L. I. Titova. Spatial demogenetic model for studying phenomena observed upon introduction of the ragweed leaf beetle in the South of Russia. Math. Mod. Nat. Phen., (2013).
[45] Appl. Math. Letters 2012 1230 1233
[46] Trends Ecol. Evolut. 2012 452 461
,[47] Nature 2003 303 306
, , , ,[48] K. Yosida. Functional analysis. Springer-Verlag, Berlin, 1995.
Cité par Sources :