Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 26-46.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper we explore the eco-evolutionary dynamics of a predator-prey model, where the prey population is structured according to a certain life history trait. The trait distribution within the prey population is the result of interplay between genetic inheritance and mutation, as well as selectivity in the consumption of prey by the predator. The evolutionary processes are considered to take place on the same time scale as ecological dynamics, i.e. we consider the evolution to be rapid. Previously published results show that population structuring and rapid evolution in such predator-prey system can stabilize an otherwise globally unstable dynamics even with an unlimited carrying capacity of prey. However, those findings were only based on direct numerical simulation of equations and obtained for particular parameterizations of model functions, which obviously calls into question the correctness and generality of the previous results. The main objective of the current study is to treat the model analytically and consider various parameterizations of predator selectivity and inheritance kernel. We investigate the existence of a coexistence stationary state in the model and carry out stability analysis of this state. We derive expressions for the Hopf bifurcation curve which can be used for constructing bifurcation diagrams in the parameter space without the need for a direct numerical simulation of the underlying integro-differential equations. We analytically show the possibility of stabilization of a globally unstable predator-prey system with prey structuring. We prove that the coexistence stationary state is stable when the saturation in the predation term is low. Finally, for a class of kernels describing genetic inheritance and mutation we show that stability of the predator-prey interaction will require a selectivity of predation according to the life trait.
DOI : 10.1051/mmnp/20149303

J. Z. Farkas 1 ; A. Y. Morozov 2, 3

1 Division of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
2 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
3 Shirshov Institute of Oceanology, Moscow, 117997, Russia
@article{MMNP_2014_9_3_a2,
     author = {J. Z. Farkas and A. Y. Morozov},
     title = {Modelling {Effects} of {Rapid} {Evolution} on {Persistence} and {Stability} in {Structured} {Predator-Prey} {Systems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {26--46},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2014},
     doi = {10.1051/mmnp/20149303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149303/}
}
TY  - JOUR
AU  - J. Z. Farkas
AU  - A. Y. Morozov
TI  - Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 26
EP  - 46
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149303/
DO  - 10.1051/mmnp/20149303
LA  - en
ID  - MMNP_2014_9_3_a2
ER  - 
%0 Journal Article
%A J. Z. Farkas
%A A. Y. Morozov
%T Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems
%J Mathematical modelling of natural phenomena
%D 2014
%P 26-46
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149303/
%R 10.1051/mmnp/20149303
%G en
%F MMNP_2014_9_3_a2
J. Z. Farkas; A. Y. Morozov. Modelling Effects of Rapid Evolution on Persistence and Stability in Structured Predator-Prey Systems. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 26-46. doi : 10.1051/mmnp/20149303. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149303/

[1] P.A. Abrams, C.J. Walters Ecology 1996 1125 1133

[2] A. S. Ackleh, J. Z. Farkas Comput. Math. Appl. 2013 1685 1694

[3] L. J. S. Allen. An introduction to mathematical biology. Pearson Prentice Hall, Upper Saddle River, NJ, 2007.

[4] G. Barles, B. Perthame Contemp. Math. 2007 57 68

[5] E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, R. Vouituriez C. R. Math. Acad. Sci. Paris 2012 761 766

[6] À. Calsina, J. Z. Farkas. Positive steady states of evolution equations with finite dimensional nonlinearities. to appear in SIAM J. Math. Anal.

[7] À. Calsina, J. Z. Farkas J. Evol. Equ. 2012 495 512

[8] À. Calsina, J. M. Palmada J. Math. Anal. Appl. 2013 386 395

[9] J.M. Cushing. An introduction to structured population dynamics. SIAM, Philadelphia, PA, 1998.

[10] O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame Th. Pop. Biol. 2005 257 271

[11] D. Dube, K. Kim, A. P. Alker, C.D. Harvell Mar. Ecol. Prog. Ser. 2002 139 150

[12] M. A. Duffy, L. Sivars-Becker Ecol. Lett. 2007 44 53

[13] S. P. Ellner, M. A. Geber, N. G. Hairston Ecol. Lett. 2011 603 614

[14] J. Z. Farkas, D. M. Green, P. Hinow Math. Model. Nat. Phenom. 2010 94 114

[15] J. Z. Farkas, T. Hagen Appl. Anal. 2007 1087 1103

[16] G. F. Fussmann, A. Gonzalez Interface Focus 2013 20130036

[17] W. Gentleman, A. Leising, B. Frost, S. Storm, J. Murray Deep-Sea Res. II Top Stud., Oceanog. 2003 2847 2875

[18] K. P. Hadeler Math. Biosci. Eng. 2010 37 49

[19] J. N. G. Hairston, L. De Meester Int. Rev. Hydrobiol. 2008 578 592

[20] M. T. J. Johnson, M. Vellend, J. R. Stinchcombe Phil. Trans. R. Soc. B. 2009 1593 1605

[21] L.E. Jones, S.P. Ellner J. Math. Biol. 2007 541 573

[22] L. E. Jones, L. Becks, S. P. Ellner, N. G. Hairston, T. Yoshida, G. F. Fussmann Phil. Trans. R. Soc. B 2009 1579 1591

[23] D. Henry. Geometric theory of semilinear parabolic equations. Springer, Berlin-New York, 1981.

[24] C. S. Holling Can. Entomol. 1959 293 320

[25] T. Kato. Perturbation Theory for Linear Operators. Springer, Berlin Heidelberg, 1995.

[26] A. Lorz, S. Mirrahimi, B. Perthame Comm. Partial Differential Equations 2011 1071 1098

[27] M. Kot. Elements of Mathematical Ecology, Cambridge University Press, 2001.

[28] M. A. Krasnoselskii. Positive solutions of operator equations. P. Noordhoff Ltd., Groningen, 1964.

[29] I. Marek SIAM J. Appl. Math. 1970 607 628

[30] B. Matthews B Ecol. Lett. 2011 690 701

[31] P. Michel, T. M. Touaoula Math. Methods Appl. Sci. 2013 323 335

[32] A. Yu. Morozov. Incorporating complex foraging of zooplankton in models: role of micro and mesoscale processes in macroscale patterns. In Dispersal, individual movement and spatial ecology: a mathematical perspective (eds M Lewis, P Maini S Petrovskii). New York, NY: Springer, (2011), 1–10.

[33] A. Yu. Morozov, E.G. Arashkevich, A. Nikishina, K Solovyev Math. Med. Biol. 2011 185 215

[34] A. Yu. Morozov, A. F. Pasternak, E. G. Arashkevich PLoS ONE 2013

[35] A. Oaten, W.W. Murdoch Amer. Nat. 1975 289 298

[36] L. Perko. Differential Equations and Dynamical Systems. Springer, New York, 2001

[37] S. V. Petrovskii, A. Y. Morozov Amer. Nat. 2010 278 289

[38] Q. I. Rahman, G. Schmeisser. Analytic theory of polynomials. London Mathematical Society Monographs. New Series 26. Oxford: Oxford University Press, 2002.

[39] D. N. Reznick, C. K. Ghalambor, K. Crooks Mol. Ecol. 2008 97 107

[40] M. L. Rosenzweig Science 1971 385 387

[41] M. L. Rosenzweig, R. H. Macarthur Am. Nat. 1963 209 223

[42] H. H. Schäfer. Banach lattices and positive operators. Springer-Verlag, Berlin, 1974.

[43] J. N. Thompson Trends Ecol. Evol. 1998 329 332

[44] Yu. V. Tyutyunov, O. V. Kovalev, L. I. Titova. Spatial demogenetic model for studying phenomena observed upon introduction of the ragweed leaf beetle in the South of Russia. Math. Mod. Nat. Phen., (2013).

[45] E. Venturino Appl. Math. Letters 2012 1230 1233

[46] M. Wolf, F. J. Weissing Trends Ecol. Evolut. 2012 452 461

[47] T. Yoshida, L. E. Jones, S. P. Ellner, G. F. Fussmann, J. Hairston Nature 2003 303 306

[48] K. Yosida. Functional analysis. Springer-Verlag, Berlin, 1995.

Cité par Sources :