Voir la notice de l'article provenant de la source EDP Sciences
N. Bessonov 1 ; N. Reinberg 1 ; V. Volpert 2
@article{MMNP_2014_9_3_a1, author = {N. Bessonov and N. Reinberg and V. Volpert}, title = {Mathematics of {Darwin{\textquoteright}s} {Diagram}}, journal = {Mathematical modelling of natural phenomena}, pages = {5--25}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2014}, doi = {10.1051/mmnp/20149302}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149302/} }
TY - JOUR AU - N. Bessonov AU - N. Reinberg AU - V. Volpert TI - Mathematics of Darwin’s Diagram JO - Mathematical modelling of natural phenomena PY - 2014 SP - 5 EP - 25 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149302/ DO - 10.1051/mmnp/20149302 LA - en ID - MMNP_2014_9_3_a1 ER -
N. Bessonov; N. Reinberg; V. Volpert. Mathematics of Darwin’s Diagram. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 5-25. doi : 10.1051/mmnp/20149302. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149302/
[1] DCDS B 2010 537 557
, , ,[2] Discrete Contin. Dyn. Syst., Ser. B 2009 541 561
, ,[3] Math. Model. Nat. Phenom. 2008 1 27
, ,[4] Biosystems 1996 143 151
[5] Nonlinearity 2009 2813 2844
, , ,[6] SIAM J. Appl. Math. 1990 1663 1688
[7] J.A. Coyne, H.A. Orr. Speciation. Sinauer Associates, Sunderland, 2004.
[8] C. Darwin. The origin of species by means of natural selection. Barnes Noble Books, New York, 2004. Publication prepared on the basis of the first edition appeared in 1859.
[9] Math. Model. Nat. Phenom. 2010 80 101
,[10] Commun. Math. Sci. 2008 729 747
, , ,[11] Nature 1999 354 357
,[12] The American Naturalist 2000 S77 S101
,[13] Nonlinear Analysis Series A: Theory, Methods and Applications 2011 4455 4473
, ,[14] Ann. Eugenics 1937 355 369
[15] S. Gavrilets. Fitness Landscape and the Origin of Species. Princeton University Press, Princeton, 2004.
[16] S. Genieys, N. Bessonov, V. Volpert. Mathematical model of evolutionary branching. Mathematical and computer modelling, 2008, doi: 10/1016/j.mcm.2008.07.023
[17] Math. Model. Nat. Phenom. 2006 65 82
, ,[18] Comptes Rendus Biologies 2006 876 879
, ,[19] J. Math. Biol. 2000 272 284
[20] Dynamical systems 2001 173 192
, ,[21] SIAM J. Appl. Math. 2000 778 802
,[22] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Bull. Moscow Univ., Math. Mech., 1:6 (1937), 1-26. In: Selected Works of A.N. Kolmogorov, Vol. 1, V.M. Tikhomirov, Editor, Kluwer, London, 1991.
[23] A. Lotka. Elements of Physical Biology. Williams Wilkins, Baltimore, 1925.
[24] T.R. Malthus. Essay on the Principle of Population. Printed for J. Johnson, in St. Paul’s Church-Yard, 1798.
[25]
[26] Math. Model. Nat.Phenom. 2013 33 41
, , ,[27] Math. Model. Nat. Phenom. 2013
,[28] Math. Model. Nat. Phenom. 2007 135 151
,[29] A. Scheel. Radially symmetric patterns of reaction-diffusion systems. Memoirs of the AMS, 165 (2003), no. 3., 86 p.
[30] Euro. Jnl. of Applied Mathematics 2011 423 453
, , ,[31] P.-F. Verhulst. Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique. 10 (1838), 113–121.
[32] A.I. Volpert, V. Volpert, V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. Translation of Mathematical Monographs, Vol. 140, AMS, Providence, 1994.
[33] V. Volpert. Elliptic Partial Differential Equations. Volume 1. Fredholm Theory of Elliptic Problems in Unbounded Domains. Birkhäuser, 2011.
[34] V. Volpert. Elliptic Partial Differential Equations. Volume 2. Reaction-diffusion Equations. Birkhäuser, 2014.
[35] Physics of Life Reviews 2009 267 310
,[36] V. Volpert, V. Vougalter. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation. In: Dispersal, individual movement and spatial ecology. M. Lewis, Ph. Maini, S. Petrovskii. Editors. Springer Applied Interdisciplinary Mathematics Series. Lecture Notes in Mathematics, Volume 2071, 2013, 331-353.
[37] V. Volterra. Leçons sur la théorie mathématique de la lutte pour la vie. Paris, 1931.
[38] Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in R1 Methods Appl. Anal. 2007 119 163
,[39] J. Differential Equations 2004 77 155
Cité par Sources :