Modelling Biological Evolution: Introduction to the Special Issue
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 1-4.

Voir la notice de l'article provenant de la source EDP Sciences

DOI : 10.1051/mmnp/20149301

Andrew Morozov 1, 2

1 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
2 Shirshov Institute of Oceanology, Moscow, 117997, Russia
@article{MMNP_2014_9_3_a0,
     author = {Andrew Morozov},
     title = {Modelling {Biological} {Evolution:} {Introduction} to the {Special} {Issue}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--4},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2014},
     doi = {10.1051/mmnp/20149301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149301/}
}
TY  - JOUR
AU  - Andrew Morozov
TI  - Modelling Biological Evolution: Introduction to the Special Issue
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 1
EP  - 4
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149301/
DO  - 10.1051/mmnp/20149301
LA  - en
ID  - MMNP_2014_9_3_a0
ER  - 
%0 Journal Article
%A Andrew Morozov
%T Modelling Biological Evolution: Introduction to the Special Issue
%J Mathematical modelling of natural phenomena
%D 2014
%P 1-4
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149301/
%R 10.1051/mmnp/20149301
%G en
%F MMNP_2014_9_3_a0
Andrew Morozov. Modelling Biological Evolution: Introduction to the Special Issue. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 3, pp. 1-4. doi : 10.1051/mmnp/20149301. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149301/

[1] N. Bessonov, N. Reinberg, V. Volpert. Mathematics of Darwin’s diagram. Math. Mod. Nat. Phen., (2009), 5–25.

[2] A. S. Bratus, V.P. Posvyanskii, A. S. Novozhilov. Replicator equations and space. Math. Mod. Nat. Phen., (2014), 47–67.

[3] M. Broom, J. Rychtár˘, D. Sykes. Kleptoparasitic interactions under asymmetric resource valuation. Math. Mod. Nat. Phen., (2014), 138–147.

[4] C. Darwin. The origin of species by means of natural selection. Barnes and Noble Books, New York, 2004. Publication prepared on the basis of the first edition appeared in 1859.

[5] M. Eigen, J. Mccascill, P. Schuster Adv. Chem. Phys. 1989 149 263

[6] J. Z. Farkas, A. Yu. Morozov. Modelling effects of rapid evolution on persistence and stability in structured predator-prey systems. Math. Mod. Nat. Phen., (2014), 26–46.

[7] J. Hofbauer, K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press, 1998.

[8] H. Kokko, K. U. Heubel Oikos 2011 641 656

[9] K. Parvinen. Metapopulation dynamics and the evolution of sperm parasitism. Math. Mod. Nat. Phen., (2014), 124–137.

[10] E.V. Iyengar Biol. J. Linn. Soc. 2008 745 762

[11] S.E. Kingsland. Modeling nature: Episodes in the history of population ecology. 2d ed. Chicago: Univ. of Chicago Press, 1995.

[12] G. P. Karev, I. G. Kareva. Replicator equations and models of biological populations and communities. Math. Mod. Nat. Phen., (2014), 68–95.

[13] A. Loewer, E. Batchelor, G. Gaglia, G. Lahav Cell 2010 89 100

[14] A. Yu. Morozov Interface Focus 2013 20130054

[15] A. Yu. Morozov, A. F. Pasternak, E. G. Arashkevich PLoS ONE 2013

[16] R. Retkute. Toward a general model for the evolution of DNA replication in three domains of life. Math. Mod. Nat. Phen., (2014), 96–106.

[17] J. Teichmann, M. Broom, E. Alonso. The evolutionary dynamics of aposematism: a numerical analysis of co-evolution in finite populations. Math. Mod. Nat. Phen., (2014), 148–164.

[18] A. Terry. Oscillations and DNA repair in a spatio-temporal model of the p53 signalling pathway. Math. Mod. Nat. Phen., (2014), 107–123.

[19] R. Weinberg. The Biology of Cancer. Garland Science: Taylor and Francis Group, 2007.

[20] T. Yoshida, L.E. Jones, S.P. Ellner, G.F. Fussmann, J. Hairston Nature 2003 303 306

Cité par Sources :