Individual-based Information Dissemination in Multilayer Epidemic Modeling
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 136-152.

Voir la notice de l'article provenant de la source EDP Sciences

In epidemic modeling, the Susceptible-Alert-Infected-Susceptible (SAIS) model extends the SIS (Susceptible-Infected-Susceptible) model. In the SAIS model, “alert” individuals observe the health status of neighbors in their contact network, and as a result, they may adopt a set of cautious behaviors to reduce their infection rate. This alertness, when incorporated in the mathematical model, increases the range of effective/relative infection rates for which initial infections die out. Built upon the SAIS model, this work investigates how information dissemination further increases this range. Information dissemination is realized through an additional network (e.g., an online social network) sharing the contact network nodes (individuals) with different links. These “information links” provide the health status of one individual to all the individuals she is connected to in the information dissemination network. We propose an optimal information dissemination strategy with an index in quadratic form relative to the information dissemination network adjacency matrix and the dominant eigenvector of the contact network. Numerical tools to exactly solve steady state infection probabilities and influential thresholds are developed, providing an evaluative baseline for our information dissemination strategy. We show that monitoring the health status of a small but “central” subgroup of individuals and circulating their incidence information optimally enhances the resilience of the society against infectious diseases. Extensive numerical simulations on a survey–based contact network for a rural community in Kansas support these findings.
DOI : 10.1051/mmnp/20149209

F.D. Sahneh 1 ; F.N. Chowdhury 2 ; G. Brase 3 ; C.M. Scoglio 1

1 K–State Epicenter, Department of Electrical and Computer Engineering Kansas State University, Manhattan, KS 66506, USA
2 Directorate for Social, Behavioral & Economic Sciences, National Science Foundation Arlington, VA 22230, USA
3 Department of Psychological Sciences, Kansas State University Manhattan, KS 66506, USA
@article{MMNP_2014_9_2_a8,
     author = {F.D. Sahneh and F.N. Chowdhury and G. Brase and C.M. Scoglio},
     title = {Individual-based {Information} {Dissemination} in {Multilayer} {Epidemic} {Modeling}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {136--152},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     doi = {10.1051/mmnp/20149209},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149209/}
}
TY  - JOUR
AU  - F.D. Sahneh
AU  - F.N. Chowdhury
AU  - G. Brase
AU  - C.M. Scoglio
TI  - Individual-based Information Dissemination in Multilayer Epidemic Modeling
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 136
EP  - 152
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149209/
DO  - 10.1051/mmnp/20149209
LA  - en
ID  - MMNP_2014_9_2_a8
ER  - 
%0 Journal Article
%A F.D. Sahneh
%A F.N. Chowdhury
%A G. Brase
%A C.M. Scoglio
%T Individual-based Information Dissemination in Multilayer Epidemic Modeling
%J Mathematical modelling of natural phenomena
%D 2014
%P 136-152
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149209/
%R 10.1051/mmnp/20149209
%G en
%F MMNP_2014_9_2_a8
F.D. Sahneh; F.N. Chowdhury; G. Brase; C.M. Scoglio. Individual-based Information Dissemination in Multilayer Epidemic Modeling. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 136-152. doi : 10.1051/mmnp/20149209. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149209/

[1] S. Cousens, B. Kanki, S. Toure, I. Diallo, V. Curtis Soc. Sci. Med. 1996 1299 1308

[2] S. Del Valle, H. Hethcote, J. Hyman, C. Castillo-Chavez Math. Biosci. 2005 228 251

[3] E. P. Fenichel, C. Castillo-Chavez, M. Ceddia, G. Chowell, P. A. G. Parra, G. J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings PNAS 2011 6306 6311

[4] N. Ferguson Nature 2007 733

[5] S. Funk, M. Salath, V. A. A. Jansen J. R. Soc. Interface 2010 1247 1256

[6] S. Funk, E. Gilad, C. Watkins, V. Jansen PNAS 2009 6872 6877

[7] W. R. Gilks, S. Richardson, D. J. Spiegelhalter. Markov chain Monte Carlo in practice. Vol. 2, CRC press, 1996.

[8] O. Givan, N. Schwartz, A. Cygelberg, L. Stone J. Theor. Biol. 2011 21 28

[9] M. J. Keeling, P. Rohani. Modeling infectious diseases in humans and animals. Princeton Univ. Press, 2008.

[10] B. Kosko. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Prentice-Hall, Inc., 1991.

[11] B. Lemmens, R. Nussbaum. Nonlinear Perron-Frobenius Theory. Vol. 189, Cambridge University Press, 2012.

[12] L. Machado, N. Wyatt, A. Devine, B. Knight J. Exp. Psychol. Hum. Percept. Perform. 2007 1045

[13] S. Miller, L. Yardley, P. Little Psych. Health Med. 2012 59 81

[14] N. Perra, D. Balcan, B. Gonasalves, A. Vespignani PLoS ONE 2011 e23084

[15] P. Poletti. Human behavior in epidemic modelling, Ph.D. thesis, University of Trento, 2010.

[16] T. Reluga PLoS Comput. Biol. 2010 e1000793

[17] F. D. Sahneh, C. Scoglio. Epidemic spread in human networks. in: IEEE Decis. Contr. P., (2011), 3008–3013.

[18] F. D. Sahneh, F. N. Chowdhury, C. M. Scoglio Sci. Rep. 2012 632

[19] F. D. Sahneh, C. Scoglio. Optimal information dissemination in epidemic networks. in: IEEE Decis. Contr. P., (2012), 1657–1662.

[20] F. D. Sahneh, C. Scoglio, P. Van Mieghem IEEE/ACM Trans. Networking 2013 1609 1620

[21] R. Sapolsky. Why Zebras Dont` Get Ulcers. An Updated Guide to Stress, Stress-Related Diseases and Coping. New York: WH Freeman and Company, 1998.

[22] C. Scoglio, W. Schumm, P. Schumm, T. Easton, S. R. Chowdhury, A. Sydney, M. Youssef PLoS ONE 2010 e11569

[23] M. Taylor, P. L. Simon, D. M. Green, T. House, I. Z. Kiss J. Math. Biol. 2012 1021 1042

[24] S. M. Tracht, S. Y. Del Valle, J. M. Hyman PLoS ONE 2010 e9018

[25] M. Youssef, C. Scoglio Math. Biosci. Eng. 2013 1227 1251

Cité par Sources :