A Generating Function Approach to HIV Transmission with Dynamic Contact Rates
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 121-135.

Voir la notice de l'article provenant de la source EDP Sciences

The basic reproduction number, R0, is often defined as the average number of infections generated by a newly infected individual in a fully susceptible population. The interpretation, meaning, and derivation of R0 are controversial. However, in the context of mean field models, R0 demarcates the epidemic threshold below which the infected population approaches zero in the limit of time. In this manner, R0 has been proposed as a method for understanding the relative impact of public health interventions with respect to disease eliminations from a theoretical perspective. The use of R0 is made more complex by both the strong dependency of R0 on the model form and the stochastic nature of transmission. A common assumption in models of HIV transmission that have closed form expressions for R0 is that a single individual’s behavior is constant over time. In this paper we derive expressions for both R0 and probability of an epidemic in a finite population under the assumption that people periodically change their sexual behavior over time. We illustrate the use of generating functions as a general framework to model the effects of potentially complex assumptions on the number of transmissions generated by a newly infected person in a susceptible population. We find that the relationship between the probability of an epidemic and R0 is not straightforward, but, that as the rate of change in sexual behavior increases both R0 and the probability of an epidemic also decrease.
DOI : 10.1051/mmnp/20149208

E.O. Romero-Severson 1 ; G.D. Meadors 2 ; E.M. Volz 3

1 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM
2 Department of Physics, University of Michigan, Ann Arbor, MI
3 Department of Epidemiology, University of Michigan, Ann Arbor, MI
@article{MMNP_2014_9_2_a7,
     author = {E.O. Romero-Severson and G.D. Meadors and E.M. Volz},
     title = {A {Generating} {Function} {Approach} to {HIV} {Transmission} with {Dynamic} {Contact} {Rates}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {121--135},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     doi = {10.1051/mmnp/20149208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149208/}
}
TY  - JOUR
AU  - E.O. Romero-Severson
AU  - G.D. Meadors
AU  - E.M. Volz
TI  - A Generating Function Approach to HIV Transmission with Dynamic Contact Rates
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 121
EP  - 135
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149208/
DO  - 10.1051/mmnp/20149208
LA  - en
ID  - MMNP_2014_9_2_a7
ER  - 
%0 Journal Article
%A E.O. Romero-Severson
%A G.D. Meadors
%A E.M. Volz
%T A Generating Function Approach to HIV Transmission with Dynamic Contact Rates
%J Mathematical modelling of natural phenomena
%D 2014
%P 121-135
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149208/
%R 10.1051/mmnp/20149208
%G en
%F MMNP_2014_9_2_a7
E.O. Romero-Severson; G.D. Meadors; E.M. Volz. A Generating Function Approach to HIV Transmission with Dynamic Contact Rates. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 121-135. doi : 10.1051/mmnp/20149208. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149208/

[1] R.M. Anderson J. Roy. Stat. Soc. A. Sta. 1988 66 93

[2] R.M. Anderson, R.M. May, B. Anderson. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, USA, 1992.

[3] K.B. Athreya, P.E. Ney. Branching processes, volume 28. Springer-Verlag Berlin, 1972.

[4] F. Ball J. Appl. Probab. 1983 227 241

[5] D. Bezemer, F. De Wolf, M.C. Boerlijst, A. Van Sighem, T.D. Hollingsworth, C. Fraser Epidemics 2010 66 79

[6] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz J. Math. Biol. 1990 365 382

[7] P.N. Halkitis, S. Brockwell, D.E. Siconolfi, R.W. Moeller, R.D. Sussman, P.J. Mourgues, B. Cutler, M.M. Sweeney JAIDS 2011 285 291

[8] T.E. Harris. The theory of branching processes. Courier Dover Publications, 2002.

[9] J.A.P. Heesterbeek, K. Dietz Stat. Neerl. 1996 89 110

[10] H.W. Hethcote, J.A. Yorke, A. Nold Math. Biosci. 1982 93 109

[11] T.D. Hollingsworth, R.M. Anderson, C. Fraser J. Infect. Dis. 2008 687 693

[12] D.G. Kendall J. London Math. Soc. 1966 385 406

[13] M. Kretzschmar, Y.T. Van Duynhoven, A.J. Severijnen Am. J. Epidemiol. 1996 306 317

[14] F. Liljeros, C.R. Edling, L.A. Amaral, H.E. Stanley, Y. Aberg Nature 2001 907 908

[15] I.M. Longini, W.S. Clark, R.H. Byers, J.W. Ward, W.W. Darrow, G.F. Lemp, H.W. Hethcote Stat. Med. 1989 831 843

[16] R.M. May, A.L. Lloyd Phys. Rev. E 2001 066112

[17] L. Meyers B. Am. Math. Soc. 2007 63 86

[18] J.C. Miller, B. Davoudi, R. Meza, A.C. Slim, B. Pourbohloul J. Theor. Biol. 2010 107 115

[19] J.C. Miller, A.C. Slim, E.M. Volz J. R. Soc. Interface 2012 890 906

[20] M.E.J. Newman Phys. Rev. E 2002 016128

[21] R. Pastor-Satorras, A. Vespignani Phys. Rev. Lett. 2001 3200 3203

[22] C.D. Pilcher, G. Joaki, I.F. Hoffman, F.E.A. Martinson, C. Mapanje, P.W. Stewart, K.A. Powers, S. Galvin, D. Chilongozi, S. Gama, M.A. Price, S.A. Fiscus, M.S. Cohen AIDS 2007 1723 1730

[23] S.D. Pinkerton AIDS Behav. 2007 677 684

[24] E.O. Romero-Severson, S.J. Alam, E.M. Volz, J.S. Koopman Stat. Comm. Infect. Dis. 2012

[25] E. Vitinghoff, J. Douglas, F. Judon, D. Mckiman, K. Macqueen, S.P. Buchinder Am. J. Epidemiol. 1999 306 311

[26] E. Volz J. Math. Biol. 2008 293 310

[27] M.J. Wawer, R.H. Gray, N.K. Sewankambo, D. Serwadda, X. Li, O. Laeyendecker, N. Kiwanuka, G. Kigozi, M. Kiddugavu, T. Lutalo J. Infect. Dis. 2005 1403 1409

[28] X. Zhang, L. Zhong, E. Romero-Severson, S.J. Alam, C.J. Henry, E.M. Volz, J.S. Koopman Stat. Comm. Infect. Dis. 2012

Cité par Sources :