Outbreak of Infectious Diseases through the Weighted Random Connection Model
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 82-88.

Voir la notice de l'article provenant de la source EDP Sciences

When modeling the spread of infectious diseases, it is important to incorporate risk behavior of individuals in a considered population. Not only risk behavior, but also the network structure created by the relationships among these individuals as well as the dynamical rules that convey the spread of the disease are the key elements in predicting and better understanding the spread. In this work we propose the weighted random connection model, where each individual of the population is characterized by two parameters: its position and risk behavior. A goal is to model the effect that the probability of transmissions among individuals increases in the individual risk factors, and decays in their Euclidean distance. Moreover, the model incorporates a combined risk behavior function for every pair of the individuals, through which the spread can be directly modeled or controlled. We derive conditions for the existence of an outbreak of infectious diseases in this model. Our main result is the almost sure existence of an infinite component in the weighted random connection model. We use results on the random connection model and site percolation in Z2.
DOI : 10.1051/mmnp/20149205

M. Bradonjić 1

1 Bell Labs, Alcatel-Lucent, 600 Mountain Avenue 2C-318, Murray Hill, NJ 07974, USA
@article{MMNP_2014_9_2_a4,
     author = {M. Bradonji\'c},
     title = {Outbreak of {Infectious} {Diseases} through the {Weighted} {Random} {Connection} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {82--88},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2014},
     doi = {10.1051/mmnp/20149205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149205/}
}
TY  - JOUR
AU  - M. Bradonjić
TI  - Outbreak of Infectious Diseases through the Weighted Random Connection Model
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 82
EP  - 88
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149205/
DO  - 10.1051/mmnp/20149205
LA  - en
ID  - MMNP_2014_9_2_a4
ER  - 
%0 Journal Article
%A M. Bradonjić
%T Outbreak of Infectious Diseases through the Weighted Random Connection Model
%J Mathematical modelling of natural phenomena
%D 2014
%P 82-88
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149205/
%R 10.1051/mmnp/20149205
%G en
%F MMNP_2014_9_2_a4
M. Bradonjić. Outbreak of Infectious Diseases through the Weighted Random Connection Model. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 2, pp. 82-88. doi : 10.1051/mmnp/20149205. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149205/

[1] L.J.S. Allen, C.T. Bauch, C. Castillo-Chavez, D. Earn, Z. Feng, M.A. Lewis, J. Li, M. Martcheva, M. Nuño, J. Watmough, M.J. Wonham. Mathematical Epidemiology (Lecture Notes in Mathematics / Mathematical Biosciences Subseries). F. Brauer, P. van den Driessche, J. Wu eds., Springer, 2008.

[2] N. Alon, J. Spencer. The probabilistic method. John Wiley Sons Inc., 2000.

[3] H. Andersson, T. Britton. Stochastic epidemic models and their statistical analysis. Springer Lecture Notes in Statistics, 151. Springer-Verlag, New York, 2000.

[4] L. Arriola, M. Hyman Computing in Science and Engineering 2007 10 20

[5] H.T. Banks, M. Davidian, J.R. Samuels Jr., K.L. Sutton. An inverse problem statistical methodology summary. Mathematical and statistical estimation approaches in epidemiology. G. Chowell, J.M. Hyman, L.M.A. Bettencourt, C. Castillo-Chavez eds., Springer, (2009), 249–302.

[6] M. Franceschetti, R. Meester. Random Networks for Communication: From Statistical Physics to Information Systems. Cambridge University Press, 2007.

[7] G. Grimmett. Percolation. Springer Verlag, 1999.

[8] R. Meester, R. Roy. Continuum Percolation. Cambridge University Press, 1996.

[9] M.D. Penrose. Random Geometric Graphs. Oxford. University Press, Oxford, 2003.

Cité par Sources :