Diffusion and Deterministic Systems
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 139-150.

Voir la notice de l'article provenant de la source EDP Sciences

We show that simple diffusion processes are weak limits of piecewise continuous processes constructed within a totally deterministic framework. The proofs are based on the continuous mapping theorem and the functional central limit theorem.
DOI : 10.1051/mmnp/20149110

M. Tyran-Kamińska 1

1 Institute of Mathematics, University of Silesia, Bankowa 14, 40-007 Katowice, Poland
@article{MMNP_2014_9_1_a9,
     author = {M. Tyran-Kami\'nska},
     title = {Diffusion and {Deterministic} {Systems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {139--150},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     doi = {10.1051/mmnp/20149110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149110/}
}
TY  - JOUR
AU  - M. Tyran-Kamińska
TI  - Diffusion and Deterministic Systems
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 139
EP  - 150
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149110/
DO  - 10.1051/mmnp/20149110
LA  - en
ID  - MMNP_2014_9_1_a9
ER  - 
%0 Journal Article
%A M. Tyran-Kamińska
%T Diffusion and Deterministic Systems
%J Mathematical modelling of natural phenomena
%D 2014
%P 139-150
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149110/
%R 10.1051/mmnp/20149110
%G en
%F MMNP_2014_9_1_a9
M. Tyran-Kamińska. Diffusion and Deterministic Systems. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 139-150. doi : 10.1051/mmnp/20149110. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149110/

[1] C. Beck Commun. Math. Phys. 1990 51 60

[2] C. Beck, G. Roepstorff Phys. A 1987 1 14

[3] P. Billingsley. Convergence of probability measures, 2nd edition. John Wiley Sons Inc., New York, 1999.

[4] C. A. Braumann Math. Biosci. 2007 81 107

[5] M. D. Donsker Mem. Amer. Math. Soc. 1951 12

[6] P. Erdös, M. Kac Bull. Amer. Math. Soc. 1946 292 302

[7] S. N. Ethier, T. G. Kurtz. Markov processes. Characterization and convergence. John Wiley Sons Inc., New York, 1986.

[8] W. Feller Ann. of Math. 1952 468 519

[9] D. Givon, R. Kupferman Phys. A 2004 385 412

[10] G. A. Gottwald, I. Melbourne Proc. R. Soc. A 2013 20130201

[11] N. Ikeda, S. Watanabe. Stochastic differential equations and diffusion processes, 2nd edition. North-Holland Publishing Co., Amsterdam, 1989.

[12] J. Jacod, A. N. Shiryaev. Limit theorems for stochastic processes, 2nd edition. Springer-Verlag, Berlin, 2003.

[13] I. Karatzas, S. E. Shreve. Brownian motion and stochastic calculus, 2nd edition. Springer-Verlag, New York, 1991.

[14] M. C. Mackey, M. Tyran-Kamińska Phys. Rep. 2006 167 222

[15] I. Melbourne, A. M. Stuart Nonlinearity 2011 1361 1367

[16] F. Merlevède, M. Peligrad, S. Utev Probab. Surv. 2006 1 36

[17] G. Pang, R. Talreja, W. Whitt Probab. Surv. 2007 193 267

[18] A. V. Skorohod Teor. Veroyatnost. i Primenen. 1956 289 319

[19] D. W. Stroock, S. R. S. Varadhan. Multidimensional diffusion processes. Springer-Verlag, Berlin, 1979.

[20] M. Tyran-Kamińska Comm. Math. Phys. 2005 1 15

[21] M. Tyran-Kamińska Stochastic Process. Appl. 2010 1629 1650

[22] M. Tyran-Kamińska Stoch. Dyn. 2010 263 289

[23] W. Whitt Math. Oper. Res. 1980 67 85

[24] W. Whitt. Stochastic-process limits. Springer-Verlag, New York, 2002.

[25] N. Wiener J. Math. Phys. 1923 121 174

[26] E. Wong, M. Zakai Ann. Math. Statist. 1965 1560 1564

Cité par Sources :