Stability Analysis of a Feedback Model for the Action of the Immune System in Leukemia
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 108-132.

Voir la notice de l'article provenant de la source EDP Sciences

A mathematical model, coupling the dynamics of short-term stem-like cells and mature leukocytes in leukemia with that of the immune system, is investigated. The model is described by a system of seven delay differential equations with seven delays. Three equilibrium points E0, E1, E2 are highlighted. The stability and the existence of the Hopf bifurcation for the equilibrium points are investigated. In the analysis of the model, the rate of asymmetric division and the rate of symmetric division are very important.
DOI : 10.1051/mmnp/20149108

S. Balea 1 ; A. Halanay 1 ; D. Jardan 1 ; M. Neamţu 1, 2 ; C. A. Safta 1

1 “POLITEHNICA” University of Bucharest Department of Mathematics and Informatics Splaiul Independentei 313 RO-060042 Bucharest, Romania
2 West University of Timisoara, Department of Economics and Modelling 300115 Pestalozzi Str. 16, Timisoara, Romania
@article{MMNP_2014_9_1_a7,
     author = {S. Balea and A. Halanay and D. Jardan and M. Neam\c{t}u and C. A. Safta},
     title = {Stability {Analysis} of a {Feedback} {Model} for the {Action} of the {Immune} {System} in {Leukemia}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {108--132},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     doi = {10.1051/mmnp/20149108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149108/}
}
TY  - JOUR
AU  - S. Balea
AU  - A. Halanay
AU  - D. Jardan
AU  - M. Neamţu
AU  - C. A. Safta
TI  - Stability Analysis of a Feedback Model for the Action of the Immune System in Leukemia
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 108
EP  - 132
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149108/
DO  - 10.1051/mmnp/20149108
LA  - en
ID  - MMNP_2014_9_1_a7
ER  - 
%0 Journal Article
%A S. Balea
%A A. Halanay
%A D. Jardan
%A M. Neamţu
%A C. A. Safta
%T Stability Analysis of a Feedback Model for the Action of the Immune System in Leukemia
%J Mathematical modelling of natural phenomena
%D 2014
%P 108-132
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149108/
%R 10.1051/mmnp/20149108
%G en
%F MMNP_2014_9_1_a7
S. Balea; A. Halanay; D. Jardan; M. Neamţu; C. A. Safta. Stability Analysis of a Feedback Model for the Action of the Immune System in Leukemia. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 108-132. doi : 10.1051/mmnp/20149108. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149108/

[1] A. K. Abass, A. H. Lichtman, S. Pillai. Cellular and molecular immunolgy. 7th edition, Elsevier (2012).

[2] L.H. Abbott, F. Michor British Journal of Cancer 2006 1136 1141

[3] M. Adimy, F. Crauste Math. Model. Nat. Phenom. 2012 1 22

[4] M. Adimy, F. Crauste, A. Halanay, M. Neamţu, D. Opriş Chaos, Solitons&Fractals 2006 1091 1107

[5] M. Adimy, F. Crauste, S. Ruan SIAM J. Appl. Math. 2005 1328 1352

[6] J. Beckman, S. Scheitza, P. Wernet, J. Fischer, B. Giebel Blood 5494 5501

[7] R. Bellman, K. L. Cooke. Differential-Difference equations. Academic Press New York, (1963).

[8] E. Beretta, Y. Kuang SIAM J. Math. Anal. 2002 1144 1165

[9] E. Burger Econometrica 1956 488 493

[10] C. Colijn, M.C. Mackey J. Theor. Biology 2005 117 132

[11] K. Cooke, Z. Grossman J. Math. Anal. Appl. 1982 592 627

[12] K. Cooke, P. Van Den Driessche Funkcialaj Ekvacioj 1986 77 90

[13] L.E. El’sgol’ts, S.B. Norkin. Introduction to the theory of differential equations with deviating arguments. (in Russian). Nauka, Moscow, 1971.

[14] A. Fridman Math. Model. Nat. Phenom 2012 3 28

[15] A. Halanay Math. Model. Nat. Phenom 2012 235 244

[16] J. Hale. Theory of functional differential equations. Springer, New York, 1977.

[17] P. Kim, P. Lee, D. Levy PLoS Comput.Biol. 2008

[18] P. Kim, P.Lee, D. Levy.A theory of immunodominance and adaptive regulation,Bull. Math. Biol. (2010), DOI 10.1007/s11538-010-9585-5.

[19] M.C. Mackey, C. Ou, L. Pujo-Menjouet, J. Wu SIAM J. Math. Anal. 2006 166 187

[20] A. Marciniak-Czochra, T. Stiehl, W. Wagner Aging 2009 723 732

[21] F. Michor, T. Hughes, Y. Iwasa, S. Branford, N.P. Shah, C. Sawyers, M. Novak Nature 2005 1267 1270

[22] H. Moore, N.K. Li J. Theor. Biol. 2004 513 523

[23] S. I. Niculescu, P. S. Kim, K. Gu, P. Lee, D. Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems (2010), Series B Volume 13, No. 1, pp. 129–156.

[24] H. Ozbay, C. Bonnet, H. Benjelloun, J. Clairambault Math. Model. Nat. Phenom. 2012 203 234

[25] R. Radulescu, D. Candea, A. Halanay American Institute of Physics Proceedings 2012 758 763

[26] T. Reya Recent Progress in Hormone Research 2003 283 295

[27] T. Stiehl, A. Marciniak-Czochra Math. Model. Nat. Phenom. 2012 166 202

[28] C. Tomasetti, D. Levi PNAS 2010 16766 16771

[29] J. Zajac, L. E. Harrington. Immune response to viruses: antibody-mediated immunity. University of Alabama at Birmingham, Birmingham, AL, USA, Elsevier Ltd, 2008.

Cité par Sources :