Voir la notice de l'article provenant de la source EDP Sciences
M. Mohr 1 ; M. V. Barbarossa 2 ; C. Kuttler 3
@article{MMNP_2014_9_1_a6, author = {M. Mohr and M. V. Barbarossa and C. Kuttler}, title = {Predator-Prey {Interactions,} {Age} {Structures} and {Delay} {Equations}}, journal = {Mathematical modelling of natural phenomena}, pages = {92--107}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2014}, doi = {10.1051/mmnp/20149107}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149107/} }
TY - JOUR AU - M. Mohr AU - M. V. Barbarossa AU - C. Kuttler TI - Predator-Prey Interactions, Age Structures and Delay Equations JO - Mathematical modelling of natural phenomena PY - 2014 SP - 92 EP - 107 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149107/ DO - 10.1051/mmnp/20149107 LA - en ID - MMNP_2014_9_1_a6 ER -
%0 Journal Article %A M. Mohr %A M. V. Barbarossa %A C. Kuttler %T Predator-Prey Interactions, Age Structures and Delay Equations %J Mathematical modelling of natural phenomena %D 2014 %P 92-107 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149107/ %R 10.1051/mmnp/20149107 %G en %F MMNP_2014_9_1_a6
M. Mohr; M. V. Barbarossa; C. Kuttler. Predator-Prey Interactions, Age Structures and Delay Equations. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 92-107. doi : 10.1051/mmnp/20149107. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149107/
[1] Trends Ecol. Evol. 2000 337 341
,[2] Biometrika 1957 27 42
[3] SIAM J. Math. Anal. 2002 1144 1165
,[4] J. Diff. Equa. 2000 212 237
,[5] Math. Model. Nat. Phenom. 2012 28 39
, , ,[6] Ecology 1987 1412 1423
, ,[7] J. Math. Biol. 1982 231 250
,[8] Math. Mod. Meth. Appl. Sci. 2006 1375 1401
[9] L. Edelstein-Keshet. Mathematical models in biology. SIAM, New York, 1988.
[10] L. C. Evans. Partial differential equations. AMS, Providence, 1998.
[11] Appl. Math. Comput. 2009 66 72
[12] Dynam. Stabil. Syst. 1988 183 195
,[13] J. Math. Biol. 2004 188 200
,[14] Arch. Ration. Mech. An. 1974 281 300
,[15] Math. Biosci. 1979 199 211
,[16] Theor. Popul. Biol. 1983 347 362
[17] J. Math. Biol. 1984 35 44
[18] Math. Mod. Meth. Appl. Sci. 2007 877 900
, ,[19] Nonlinear Anal. Real 2009 1662 1678
, ,[20] Dynam. Stabil. Syst. 1991 173 189
[21] A. J. Lotka. Elements of physical biology. Williams Wilkins, Princeton, N. J., 1925.
[22] R. May. Complexity and stability in model ecosystems. Princeton University Press, 1973.
[23] M. Mohr. On predator-prey models with delay due to maturation. Master’s thesis, Technische Universität München, Munich, 2012.
[24] Theor. Popul. Biol. 1983 114 135
,[25] Mech. Ageing Dev. 2003 605 617
, ,[26] Theor. Popul. Biol. 1985 202 221
[27] Am. Nat. 1963 209 223
,[28] J. Theor. Biol. 1972 477 492
[29] Philos. Mag. Ser. 6 1911 435 438
,[30] H. Smith. An introduction to delay differential equations with applications to the life sciences. Springer, New York, 2011.
[31] J. Anim. Ecol. 1949 1 35
[32] Math. Med. Biol. 2002 185 205
[33] Mem. Accad. Lincei Roma 1926 31 113
[34] Comput. Math. Appl. 1997 83 91
,[35] Annu. Rev. Entomol. 1995 269 295
,Cité par Sources :