Predator-Prey Interactions, Age Structures and Delay Equations
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 92-107.

Voir la notice de l'article provenant de la source EDP Sciences

A general framework for age-structured predator-prey systems is introduced. Individuals are distinguished into two classes, juveniles and adults, and several possible interactions are considered. The initial system of partial differential equations is reduced to a system of (neutral) delay differential equations with one or two delays. Thanks to this approach, physically correct models for predator-prey with delay are provided. Previous models are considered and analysed in view of the above results. A Rosenzweig-MacArthur model with delay is presented as an example.
DOI : 10.1051/mmnp/20149107

M. Mohr 1 ; M. V. Barbarossa 2 ; C. Kuttler 3

1 University of Heidelberg, Institute of Applied Mathematics, D-69120 Heidelberg, Germany
2 Bolyai Institute, University of Szeged, H-6720 Szeged, Hungary
3 Institute of Mathematics, Technische Universität München, D-85748 Garching, Germany
@article{MMNP_2014_9_1_a6,
     author = {M. Mohr and M. V. Barbarossa and C. Kuttler},
     title = {Predator-Prey {Interactions,} {Age} {Structures} and {Delay} {Equations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {92--107},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     doi = {10.1051/mmnp/20149107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149107/}
}
TY  - JOUR
AU  - M. Mohr
AU  - M. V. Barbarossa
AU  - C. Kuttler
TI  - Predator-Prey Interactions, Age Structures and Delay Equations
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 92
EP  - 107
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149107/
DO  - 10.1051/mmnp/20149107
LA  - en
ID  - MMNP_2014_9_1_a6
ER  - 
%0 Journal Article
%A M. Mohr
%A M. V. Barbarossa
%A C. Kuttler
%T Predator-Prey Interactions, Age Structures and Delay Equations
%J Mathematical modelling of natural phenomena
%D 2014
%P 92-107
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149107/
%R 10.1051/mmnp/20149107
%G en
%F MMNP_2014_9_1_a6
M. Mohr; M. V. Barbarossa; C. Kuttler. Predator-Prey Interactions, Age Structures and Delay Equations. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 92-107. doi : 10.1051/mmnp/20149107. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149107/

[1] P. A. Abrams, L. R. Ginzburg Trends Ecol. Evol. 2000 337 341

[2] M. S. Bartlett Biometrika 1957 27 42

[3] E. Beretta, Y. Kuang SIAM J. Math. Anal. 2002 1144 1165

[4] G. A. Bocharov, K. P. Hadeler J. Diff. Equa. 2000 212 237

[5] A. Castellazzo, A. Mauro, C. Volpe, E. Venturino Math. Model. Nat. Phenom. 2012 28 39

[6] D. T. Crouse, L. B. Crowder, H. Caswell Ecology 1987 1412 1423

[7] J. M. Cushing, M. Saleem J. Math. Biol. 1982 231 250

[8] A. D’Onofrio Math. Mod. Meth. Appl. Sci. 2006 1375 1401

[9] L. Edelstein-Keshet. Mathematical models in biology. SIAM, New York, 1988.

[10] L. C. Evans. Partial differential equations. AMS, Providence, 1998.

[11] M. V. S. Frasson Appl. Math. Comput. 2009 66 72

[12] K. Gopalsamy, B. G. Zhang Dynam. Stabil. Syst. 1988 183 195

[13] S. A. Gourley, Y. Kuang J. Math. Biol. 2004 188 200

[14] M. E. Gurtin, R. C. Maccamy Arch. Ration. Mech. An. 1974 281 300

[15] M. E. Gurtin, R. C. Maccamy Math. Biosci. 1979 199 211

[16] A. Hastings Theor. Popul. Biol. 1983 347 362

[17] A. Hastings J. Math. Biol. 1984 35 44

[18] M. L. Hbid, E. Sanchez, R. Bravo De La Parra Math. Mod. Meth. Appl. Sci. 2007 877 900

[19] A. Kacha, M. H. Hbid, R. Bravo De La Parra Nonlinear Anal. Real 2009 1662 1678

[20] Y. Kuang Dynam. Stabil. Syst. 1991 173 189

[21] A. J. Lotka. Elements of physical biology. Williams Wilkins, Princeton, N. J., 1925.

[22] R. May. Complexity and stability in model ecosystems. Princeton University Press, 1973.

[23] M. Mohr. On predator-prey models with delay due to maturation. Master’s thesis, Technische Universität München, Munich, 2012.

[24] R. M. Nisbet, W. S. C. Gurney Theor. Popul. Biol. 1983 114 135

[25] V. N. Novoseltsev, J. A. Novoseltseva, A. I. Yashin Mech. Ageing Dev. 2003 605 617

[26] L. Nunney Theor. Popul. Biol. 1985 202 221

[27] M. L. Rosenzweig, R. H. Macarthur Am. Nat. 1963 209 223

[28] G. G. Ross J. Theor. Biol. 1972 477 492

[29] F. R. Sharpe, A. J. Lotka Philos. Mag. Ser. 6 1911 435 438

[30] H. Smith. An introduction to delay differential equations with applications to the life sciences. Springer, New York, 2011.

[31] M. E. Solomon J. Anim. Ecol. 1949 1 35

[32] E. Venturino Math. Med. Biol. 2002 185 205

[33] V. Volterra Mem. Accad. Lincei Roma 1926 31 113

[34] W. Wang, L. Chen Comput. Math. Appl. 1997 83 91

[35] K. S. Williams, C. Simon Annu. Rev. Entomol. 1995 269 295

Cité par Sources :