Simulating Stochasticities in Chemical Reactions with Deterministic Delay Differential Equations
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 79-91.

Voir la notice de l'article provenant de la source EDP Sciences

The stochastic dynamics of chemical reactions can be accurately described by chemical master equations. An approximated time-evolution equation of the Langevin type has been proposed by Gillespie based on two explicit dynamical conditions. However, when numerically solve these chemical Langevin equations, we often have a small stopping time–a time point of having an unphysical solution–in the case of low molecular numbers. This paper proposes an approach to simulate stochasticities in chemical reactions with deterministic delay differential equations. We introduce a deterministic Brownian motion described by delay differential equations, and replace the Gaussian noise in the chemical Langevin equations by the solutions of these deterministic equations. This modification can largely increase the stopping time in simulations and regain the accuracy as in the chemical Langevin equations. The novel aspect of the present study is to apply the deterministic Brownian motion to chemical reactions. It suggests a possible direction of developing a hybrid method of simulating dynamic behaviours of complex gene regulation networks.
DOI : 10.1051/mmnp/20149106

H. Jin 1 ; J. Lei 1

1 Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics Tsinghua University, Beijing 100084, China
@article{MMNP_2014_9_1_a5,
     author = {H. Jin and J. Lei},
     title = {Simulating {Stochasticities} in {Chemical} {Reactions} with {Deterministic} {Delay} {Differential} {Equations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     doi = {10.1051/mmnp/20149106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149106/}
}
TY  - JOUR
AU  - H. Jin
AU  - J. Lei
TI  - Simulating Stochasticities in Chemical Reactions with Deterministic Delay Differential Equations
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 79
EP  - 91
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149106/
DO  - 10.1051/mmnp/20149106
LA  - en
ID  - MMNP_2014_9_1_a5
ER  - 
%0 Journal Article
%A H. Jin
%A J. Lei
%T Simulating Stochasticities in Chemical Reactions with Deterministic Delay Differential Equations
%J Mathematical modelling of natural phenomena
%D 2014
%P 79-91
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149106/
%R 10.1051/mmnp/20149106
%G en
%F MMNP_2014_9_1_a5
H. Jin; J. Lei. Simulating Stochasticities in Chemical Reactions with Deterministic Delay Differential Equations. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 79-91. doi : 10.1051/mmnp/20149106. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149106/

[1] D.F. Anderson J. Chem. Phys. 2008 054103

[2] Y. Cao, D.T. Gillespie, L.R. Petzold J. Chem. Phys. 2005 054104

[3] Y. Cao, D.T. Gillespie, L.R. Petzold J. Chem. Phys. 2006 044109

[4] A. Chatterjee, D. Vlachos, M. Katsoulakis J. Chem. Phys. 2005 024112

[5] L.Y. Chew, C. Ting Physica A. 2002 275 296

[6] S.L. Cotter, K.C. Zygalakis, I.G. Kevrekidis, R. Erban J. Chem. Phys. 2011 094102

[7] M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain Science 2002 1183 1186

[8] P. Gaspard, M.E. Briggs, M.K. Francis, J.V. Sengers, R.W. Gammon, J.R. Dorfman, R.V. Calabrese Nature 1998 865 868

[9] D.T. Gillespie J. Chem. Phys. 2000 297 306

[10] D.T. Gillespie J. Chem. Phys. 2001 1716 1733

[11] D.T. Gillespie Annu. Rev. Phys. Chem. 2007 35 55

[12] I. Golding, J. Paulsson, S.M. Zawilski, E.C. Cox Cell 2005 1025 1036

[13] M. Kærn, T.C. Elston, W.J. Blake, J.J. Collins Nat. Rev. Genet. 2005 451 464

[14] N.G. Van Kampen. Stochastic processes in physics and chemistry. 3rd ed., Elsevier, 2007.

[15] P.E. Kloeden, E. Platen. Numerical solution of stochastic differential equations. Springer, New York, 1992.

[16] A. Lasota, M.C. Mackey. Probabilistic properties of deterministic systems. Cambridge University Press, Cambridge, 2008.

[17] J. Lei J. Theor. Biol. 2009 485 492

[18] J. Lei, M.C. Mackey Phy. Rev. E. 2011 041105

[19] M.C. Mackey, M. Tyran-Kamińska Physics Reports 2006 167 222

[20] G.N. Milstein. Numerical integration of stochastic differential equations. Kluwer, Dordrecht, 1995.

[21] B. Munsky, G. Neuert, A. Van Oudenaarden Science 2012 183 187

[22] J. Paulsson Nature 2004 415 418

[23] T. Tian, K. Burrage J. Chem. Phys. 2004 10356 10364

[24] N. Maheshri Science 2010 1142 1145

[25] G. Trefán, P. Grigolini, B.J. West Phys. Rev. A. 1992 1249 1252

Cité par Sources :