Voir la notice de l'article provenant de la source EDP Sciences
A. Halanay 1 ; D. Cândea 1 ; I. R. Rădulescu 1
@article{MMNP_2014_9_1_a4, author = {A. Halanay and D. C\^andea and I. R. R\u{a}dulescu}, title = {Existence and {Stability} of {Limit} {Cycles} in a {Two-delays} {Model} of {Hematopoiesis} {Including} {Asymmetric} {Division}}, journal = {Mathematical modelling of natural phenomena}, pages = {58--78}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2014}, doi = {10.1051/mmnp/20149105}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149105/} }
TY - JOUR AU - A. Halanay AU - D. Cândea AU - I. R. Rădulescu TI - Existence and Stability of Limit Cycles in a Two-delays Model of Hematopoiesis Including Asymmetric Division JO - Mathematical modelling of natural phenomena PY - 2014 SP - 58 EP - 78 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149105/ DO - 10.1051/mmnp/20149105 LA - en ID - MMNP_2014_9_1_a4 ER -
%0 Journal Article %A A. Halanay %A D. Cândea %A I. R. Rădulescu %T Existence and Stability of Limit Cycles in a Two-delays Model of Hematopoiesis Including Asymmetric Division %J Mathematical modelling of natural phenomena %D 2014 %P 58-78 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149105/ %R 10.1051/mmnp/20149105 %G en %F MMNP_2014_9_1_a4
A. Halanay; D. Cândea; I. R. Rădulescu. Existence and Stability of Limit Cycles in a Two-delays Model of Hematopoiesis Including Asymmetric Division. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 58-78. doi : 10.1051/mmnp/20149105. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149105/
[1] J. of Math. Anal. and Appl. 1993 125 134
[2] Nonlinear Analysis: Real World Applications 2005 651 670
, ,[3] SIAM Journal on Applied Mathematics 2005 1328 1352
, ,[4] J. Theor. Biol. 2006 288 299
, ,[5] Chaos, Solitons and Fractals 2006 1091 1107
, , , ,[6] Math. Model. Nat. Phenom. 2012 1 22
,[7] Annals of the New York Academy of Sciences 1987 280 282
,[8] SIAM J. Math. Anal. 2002 1144 1165
,[9] J. Theor. Biology 2003 283 298
, ,[10] J. Math. Anal. and Appl. 1991 312 348
[11] Journal of mathematical biology 2006 499 519
, ,[12] J. Theor. Biology 2005 117 132
,[13] J. Math. Anal. Appl. 1982 592 627
,[14] Funkcialaj Ekvacioj 1986 77 90
,[15] Blood 2000 3343 3356
, ,[16] Bulletin of mathematical biology 2011 2983 3007
,[17] L.E. El’sgol’ts, S.B. Norkin. Introduction to the theory of differential equations with deviating arguments. (in Russian). Nauka, Moscow, 1971.
[18] ACM Transactions on Mathematical Software (TOMS) 2002 1 21
, ,[19] Math. Model. Nat. Phenom. 2012 3 28
[20] New England Journal of Medicine 2003 1451 1464
,[21] J. Hale. Introduction to Functional Differential Equations. Springer, New York, 1977.
[22] J. Hale, S.M. Verduyn Lunel. Theory of Functional Differential Equations, Springer, New York, 1993.
[23] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan. Theory and Applications of Hopf Bifurcation. London Mathem. Soc. Lecture Note Series 41, Cambridge University Press, 1981.
[24] Journal of theoretical biology 2000 505 519
, , ,[25] Proceedings of the National Academy of Sciences of the United States of America 2005 9714 9719
,[26] M.C. Mackey. Mathematical models of hematopoietic cell replication and control. Case Studies in Mathematical Modeling–Ecology, Physiology and Cell Biology. New Jersey, Prentice-Hall, 151-182, 1997.
[27] Journal of theoretical biology 1998 135 146
, ,[28] Aging 2009 723 732
, ,[29] Nature 2005 1267 1270
, , , , , ,[30] Nature Reviews Cancer 2004 197 205
, ,[31] Math. Model. Nat. Phenom. 2012 203 234
, , ,[32] SIAM J. Appl. Dynam. Sys. 2005 312 332
, ,[33] C. R. Biologies 2004 235 244
,[34] Nature medicine 2006 1181 1184
, , , , ,[35] New England Journal of Medicine 1999 1330 1340
[36] Applied Numerical Mathematics 2001 441 458
,[37] Math. Model. Nat. Phenom. 2012 166 202
,[38] PNAS 2010 16766 16771
,Cité par Sources :