Voir la notice de l'article provenant de la source EDP Sciences
A. Halanay 1 ; D. Cândea 1 ; I. R. Rădulescu 1
@article{10_1051_mmnp_20149105,
author = {A. Halanay and D. C\^andea and I. R. R\u{a}dulescu},
title = {Existence and {Stability} of {Limit} {Cycles} in a {Two-delays} {Model} of {Hematopoiesis} {Including} {Asymmetric} {Division}},
journal = {Mathematical modelling of natural phenomena},
pages = {58--78},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2014},
doi = {10.1051/mmnp/20149105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149105/}
}
TY - JOUR AU - A. Halanay AU - D. Cândea AU - I. R. Rădulescu TI - Existence and Stability of Limit Cycles in a Two-delays Model of Hematopoiesis Including Asymmetric Division JO - Mathematical modelling of natural phenomena PY - 2014 SP - 58 EP - 78 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149105/ DO - 10.1051/mmnp/20149105 LA - en ID - 10_1051_mmnp_20149105 ER -
%0 Journal Article %A A. Halanay %A D. Cândea %A I. R. Rădulescu %T Existence and Stability of Limit Cycles in a Two-delays Model of Hematopoiesis Including Asymmetric Division %J Mathematical modelling of natural phenomena %D 2014 %P 58-78 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149105/ %R 10.1051/mmnp/20149105 %G en %F 10_1051_mmnp_20149105
A. Halanay; D. Cândea; I. R. Rădulescu. Existence and Stability of Limit Cycles in a Two-delays Model of Hematopoiesis Including Asymmetric Division. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 58-78. doi: 10.1051/mmnp/20149105
[1] J. of Math. Anal. and Appl. 1993 125 134
[2] , , Nonlinear Analysis: Real World Applications 2005 651 670
[3] , , SIAM Journal on Applied Mathematics 2005 1328 1352
[4] , , J. Theor. Biol. 2006 288 299
[5] , , , , Chaos, Solitons and Fractals 2006 1091 1107
[6] , Math. Model. Nat. Phenom. 2012 1 22
[7] , Annals of the New York Academy of Sciences 1987 280 282
[8] , SIAM J. Math. Anal. 2002 1144 1165
[9] , , J. Theor. Biology 2003 283 298
[10] J. Math. Anal. and Appl. 1991 312 348
[11] , , Journal of mathematical biology 2006 499 519
[12] , J. Theor. Biology 2005 117 132
[13] , J. Math. Anal. Appl. 1982 592 627
[14] , Funkcialaj Ekvacioj 1986 77 90
[15] , , Blood 2000 3343 3356
[16] , Bulletin of mathematical biology 2011 2983 3007
[17] L.E. El’sgol’ts, S.B. Norkin. Introduction to the theory of differential equations with deviating arguments. (in Russian). Nauka, Moscow, 1971.
[18] , , ACM Transactions on Mathematical Software (TOMS) 2002 1 21
[19] Math. Model. Nat. Phenom. 2012 3 28
[20] , New England Journal of Medicine 2003 1451 1464
[21] J. Hale. Introduction to Functional Differential Equations. Springer, New York, 1977.
[22] J. Hale, S.M. Verduyn Lunel. Theory of Functional Differential Equations, Springer, New York, 1993.
[23] B.D. Hassard, N.D. Kazarinoff, Y.H. Wan. Theory and Applications of Hopf Bifurcation. London Mathem. Soc. Lecture Note Series 41, Cambridge University Press, 1981.
[24] , , , Journal of theoretical biology 2000 505 519
[25] , Proceedings of the National Academy of Sciences of the United States of America 2005 9714 9719
[26] M.C. Mackey. Mathematical models of hematopoietic cell replication and control. Case Studies in Mathematical Modeling–Ecology, Physiology and Cell Biology. New Jersey, Prentice-Hall, 151-182, 1997.
[27] , , Journal of theoretical biology 1998 135 146
[28] , , Aging 2009 723 732
[29] , , , , , , Nature 2005 1267 1270
[30] , , Nature Reviews Cancer 2004 197 205
[31] , , , Math. Model. Nat. Phenom. 2012 203 234
[32] , , SIAM J. Appl. Dynam. Sys. 2005 312 332
[33] , C. R. Biologies 2004 235 244
[34] , , , , , Nature medicine 2006 1181 1184
[35] New England Journal of Medicine 1999 1330 1340
[36] , Applied Numerical Mathematics 2001 441 458
[37] , Math. Model. Nat. Phenom. 2012 166 202
[38] , PNAS 2010 16766 16771
Cité par Sources :