Optimal Control of Leukemic Cell Population Dynamics
Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 4-26.

Voir la notice de l'article provenant de la source EDP Sciences

We are interested in optimizing the co-administration of two drugs for some acute myeloid leukemias (AML), and we are looking for in vitro protocols as a first step. This issue can be formulated as an optimal control problem. The dynamics of leukemic cell populations in culture is given by age-structured partial differential equations, which can be reduced to a system of delay differential equations, and where the controls represent the action of the drugs. The objective function relies on eigenelements of the uncontrolled model and on general relative entropy, with the idea to maximize the efficiency of the protocols. The constraints take into account the toxicity of the drugs. We present in this paper the modeling aspects, as well as theoretical and numerical results on the optimal control problem that we get.
DOI : 10.1051/mmnp/20149102

X. Dupuis 1

1 CMAP, Ecole Polytechnique & Inria Saclay, 91128 Palaiseau Cedex, France
@article{MMNP_2014_9_1_a1,
     author = {X. Dupuis},
     title = {Optimal {Control} of {Leukemic} {Cell} {Population} {Dynamics}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {4--26},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2014},
     doi = {10.1051/mmnp/20149102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149102/}
}
TY  - JOUR
AU  - X. Dupuis
TI  - Optimal Control of Leukemic Cell Population Dynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2014
SP  - 4
EP  - 26
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149102/
DO  - 10.1051/mmnp/20149102
LA  - en
ID  - MMNP_2014_9_1_a1
ER  - 
%0 Journal Article
%A X. Dupuis
%T Optimal Control of Leukemic Cell Population Dynamics
%J Mathematical modelling of natural phenomena
%D 2014
%P 4-26
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149102/
%R 10.1051/mmnp/20149102
%G en
%F MMNP_2014_9_1_a1
X. Dupuis. Optimal Control of Leukemic Cell Population Dynamics. Mathematical modelling of natural phenomena, Tome 9 (2014) no. 1, pp. 4-26. doi : 10.1051/mmnp/20149102. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20149102/

[1] M. Adimy, F. Crauste Math. Comput. Modelling 2009 2128 2137

[2] M. Adimy, F. Crauste, A. El Abdllaoui J. Biol. Systems 2008 395 424

[3] J. L. Avila, C. Bonnet, J. Clairambault, H. Ozbay, S.-I. Niculescu, F. Merhi, R. Tang, J.-P. Marie. A new model of cell dynamics in Acute Myeloid Leukemia involving distributed delays. In 10th IFAC Workshop on Time Delay Systems, Boston, USA, 2012, 55–60.

[4] A. Ballesta, F. Mehri, X. Dupuis, C. Bonnet, J.F. Bonnans, R. Tang, F. Fava, P. Hirsch, J.-P. Marie, J. Clairambault. In vitro dynamics of LAM patient blood sample cells and their therapeutic control by aracytine and an Flt3 inhibitor. In preparation.

[5] C. Basdevant, J. Clairambault, F. Lévi M2AN Math. Model. Numer. Anal. 2005 1069 1086

[6] F. Billy, J. Clairambault Discrete Contin. Dyn. Syst. Ser. B 2013 865 889

[7] F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon, S. Saito. Synchronisation and control of proliferation in cycling cell population models with age structure. Mathematics and Computers in Simulation, 2012.

[8] J.F. Bonnans, X. Dupuis, L. Pfeiffer. Second-order necessary conditions in Pontryagin form for optimal control problems. Rapport de recherche RR-8306, INRIA, May 2013.

[9] J.F. Bonnans, P. Martinon, V. Grélard. Bocop v1.0.3: A collection of examples. Url: www.bocop.org, June 2012.

[10] G. Feichtinger, G. Tragler, V.M. Veliov J. Math. Anal. Appl. 2003 47 68

[11] P. Gabriel, S.P. Garbett, V. Quaranta, D.R. Tyson, G.F. Webb J. Theoret. Biol. 2012 19 27

[12] L. Göllmann, D. Kern, H. Maurer Optimal Control Appl. Methods 2009 341 365

[13] T. Guinn J. Optimization Theory Appl. 1976 371 377

[14] A. Halanay SIAM Journal on Control 1968 215 234

[15] P. Hinow, S. Wang, C. Arteaga, G. Webb Theoretical Biology and Medical Modelling 2007 14

[16] U. Ledzewicz, H. Maurer, H. Schättler Math. Biosci. Eng. 2011 307 323

[17] U. Ledzewicz, H. Schättler Math. Biosci. 2007 320 342

[18] M.C. Mackey Blood 1978 941 956

[19] C. Marquet, M. Adimy C. R. Math. Acad. Sci. Paris 2012 173 176

[20] P. Michel, S. Mischler, B. Perthame J. Math. Pures Appl. (9) 2005 1235 1260

[21] H. Özbay, C. Bonnet, H. Benjelloun, J. Clairambault Math. Model. Nat. Phenom. 2012 203 234

[22] D. Peixoto, D. Dingli, J.M. Pacheco Mathematical and Computer Modelling 2011 1546 1557

[23] B. Perthame. Transport equations in biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.

[24] J.M. Rowe Best Practice & Research Clinical Haematology 2008 1 3

[25] T. Stiehl, A. Marciniak-Czochra Math. Model. Nat. Phenom. 2012 166 202

Cité par Sources :